
VK-Gong

User’s manual

Version 1.0 - March 2017

Àngels Aragonès
Cédric Camier

Michele Ducceschi
Olivier Thomas

Cyril Touzé

HTTPS://VKGONG.ENSTA-PARISTECH.FR/

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License (the “License”). You may not use this file except in compliance with the License. You may
obtain a copy of the License at https://creativecommons.org/licenses/by-nc-sa/4.0/.
Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

First publication, March 2017

https://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

I Introduction

Foreword . 9

1 Introduction . 11

II Theory

2 General equations . 17

2.1 Von Kármán equations 17
2.2 Imperfect plate case 18
2.3 Modal approach for the perfect plate 18
2.3.1 Coupling coefficients: HHH and ΓΓΓ . 20
2.3.2 Modal approach for imperfect plates . 20

2.4 Eigenfrequencies of the imperfect plate 21

3 Circular plates . 23

3.1 Non-dimensioning of variables 23
3.2 Boundary conditions 24
3.2.1 General boundary conditions . 24

Boundary conditions in term of forces and displacements 24
In-plane simple boundary conditions in term of F and w 24

3.2.2 Particular boundary conditions . 25
Completely free edge . 25

Completely clamped edge . 25
Transversely clamped and in-plane free edge . 25
Transversely elastic and in-plane free edge . 25

3.3 Mode families and modal coupling coefficients for some combinations of
boundary conditions 26

3.3.1 Circular plate with free edge . 26
3.3.2 Circular plate with clamped edge . 28
3.3.3 Circular plate with elastic edge in the transverse direction and free edge in the

in-plane direction . 30

4 Rectangular plates . 35

4.1 Boundary conditions 35

4.2 Mode families and modal coupling coefficients for some combinations of
boundary conditions 35

4.2.1 Simply supported edge . 36

5 Time integration schemes . 39

5.1 Operators 39

5.2 Energy conserving scheme 40

5.3 Störmer-Verlet scheme 41

III User’s manual

6 Matlab code . 45

6.1 Installation and general description 45

6.2 How to use the program 46

6.3 Linear characteristics functions 46
6.3.1 Circular . 46

ComputeTransverseEigenfrequenciesCircular.m . 46
ComputeInplaneEigenfrequenciesCircular.m . 48
ModeShapeCircular.m . 49
norm_modes.m . 50
DisplayEigenfrequenciesCircular.m . 51

6.3.2 Rectangular . 51
ComputeTransverseEigenfrequenciesRectangular.m 51
ModeShapeRectangular.m . 52

6.4 Nonlinear characteristics functions 53
6.4.1 Circular . 53

H_tensorCircular.m . 53
6.4.2 Rectangular . 56

H_TensorRectangular.m . 56
AiryStressFactorsCalculation.m . 58

6.4.3 Common . 60
GammaTensor.m . 60

6.5 Imperfection functions 60
6.5.1 Circular . 61

ProjectionOfTheImperfectionCircular.m . 61
AxisymmetricCap.m . 62
ComputationOfTheProjectionCoefficientsCircular.m 63

6.5.2 Rectangular . 66
ProjectionOfTheImperfectionRectangular.m . 66
RectangularImperfection.m . 66
ComputationOfTheProjectionCoefficientsRectangular.m 68

6.5.3 Common . 70
ComputeEigenfrequenciesImperfectPlate.m . 70

6.6 Excitation and damping functions 71
6.6.1 Common . 71

c_preset.m . 71
StrikeExcitation.m . 71
HarmonicSignal.m . 72
ColoredNoiseSignal.m . 74

6.7 Time integration functions 76
6.7.1 Common . 76

ftime_imperfect_ECS.m . 77
ftime_imperfect_verlet.m . 78

6.8 Ouput plot functions 78
6.8.1 Common . 79

6.9 Parsers 79
6.9.1 Circular . 79

plate_def_circ.m . 79
LoadHTensorCircular.m . 82
score_circ.m . 82

6.9.2 Rectangular . 83
plate_def_rect.m . 83
LoadHTensorRectangular.m . 85
score_rect.m . 85

6.10 Input file contents 86
6.10.1 Circular plate . 86

Plate characteristics . 86
Simulation parameters . 88
Score parameters . 89

6.10.2 Rectangular plate . 91
Plate characteristics . 91
Simulation parameters . 93
Score parameters . 94

6.10.3 Common . 95
Gamma tensor file . 95

7 C++ code . 97

IV Example cases

8 Matlab cases . 101

8.1 Case C1: Perfect circular plate with free edge 101
8.1.1 Input parameters . 101
8.1.2 Results . 102

8.2 Case C2: Perfect circular plate with clamped edge 103
8.2.1 Input parameters . 103
8.2.2 Results . 104

8.3 Case C3: Imperfect spherical circular plate with elastic edge 104
8.3.1 Input parameters . 104
8.3.2 Results . 105

8.4 Case R5: Imperfect spherical circular plate with elastic edge 105
8.4.1 Input parameters . 105
8.4.2 Results . 107

8.5 Case CT1: Perfect circular plates with varying boundary conditions at the
edge 107

8.5.1 Input parameters . 107
8.5.2 Results . 109

8.6 Case CT3: Perfect circular plates with free edge varying thickness 109
8.6.1 Input parameters . 109

Bibliography . 115

I

Foreword . 9

1 Introduction . 11

Introduction

Foreword

VK-gong find its origin in the article : C. Touzé, O.Thomas and A. Chaigne : Asymmetric non-
linear forced vibrations of free-edge circular plates, part I: theory , Journal of Sound and Vibration,
vol 258, No 4, pp. 649-676, 2002 [29]. This paper was devoted to large-amplitude vibrations of
free-edge circular plates. The von Kármán theory is used to model the geometrically nonlinear
vibrations with moderate amplitudes, a framework which is sufficient for a number of applications
ranging from engineering to musical acoustics. One of the key points addressed by the research
initiated at this time by Antoine Chaigne who supervises the two PhD works by myself and Olivier
Thomas (respectively defended in 2000 and 2001), was to simulate the sound produced by gongs
and cymbals [24, 26]. These percussion instruments, though very simple in shape, present a very
rich bright and shimmering sound with a broadband Fourier spectrum, manifestation of the strongly
nonlinear dynamics that develops during the vibration. From this very first idea, numerous studies
have been led in order to understand the nonlinear dynamics, the choice of mechanical models able
to simulate such systems and finally the choice of adequate numerical methods that could be able
to have both the accuracy, the stability and reasonable computing times. VK-gong thus benefits
from all these developments, knowledge and comprehension gained around the strongly nonlinear
vibrations of plates and shells with dynamics displaying from linear to wave turbulence regime.

VK-gong relys on the von Kármán model for thin plates and shells. This model can be viewed
as the first nonlinear perturbation of the Kirchhoff-Love equations. It contains a number of ap-
proximations, but has been proven to be sufficient to model strngly nonlinear dynamics including
turbulence. In particular, it has been used in [4, 5, 11, 13, 15, 19, 21, 27, 28] for all the works
dedicated to a better understanding of the transition to turbulence and the energy transfer and
repartition among wavelength once the turbulence is settled down.

With our goal of sound synthesis in mind, important features with regard to the numerical
methods used to integrate the problem in time have been selected. This features makes VK-
gong different from standard structural codes for dynamics, generally based on Finite Element
procedures. Some peculiarities linked to the human auditory perception conducted to specific

10

choices. In particular:
• Description of losses: A fine and frequency-dependent description of losses is needed in

order to recover correctly the temporal and spectral evolution and a realistic timbre.
• Accuracy: The characteristics of the plates, in particular the eigenfrequencies, need to be

numerically finely reproduced without numerical dispersion or computational inaccuracies in
the high-frequency range that could blur the sound numerically simulated.

For these reasons a modal approach has been selected for the space discretization of the nonlinear
problems. The main advantages of such approach are the following:
• the accuracy of the computation of the eigenfrequencies can be finely controlled. In some

cases where analytical solutions exist (e.g. for circular plates) the solution can be considered
as exact.
• the losses can be tuned at ease by defining modal damping factors for each mode retained in

the simulation.
Since the first paper in 2002, the models and methods have been upgraded by considering:
• a static, geometric imperfection in the shape of the plate, in order to take into account more

easily shallow shells and different profiles. This has been realized in the PhD by Cédric
Camier, defended in 2009 [6].
• the case of rectangular plates and energy-conserving scheme for the modal approach. The

code has gained in computational time and generality. This parts were treated in the PhD by
Michele Ducceschi, defended in 2014 [9].

The article : M. Ducceschi and C. Touzé: Modal approach for nonlinear vibrations of damped
impacted plates: Application to sound synthesis of gongs and cymbals, Journal of Sound and
Vibration, vol. 344, 313-331, 2015 [10]; summarizes the main outcomes and give a general
framework adopted in this documentation. The first sounds of gongs and cymbals have been
obtained in 2014 for circular and rectangular perfect plates.

The generality of the code and its performance in terms of robustness, accuracy, ease in the
implementation of losses, makes it a very good candidate for simulations of large amplitudes of
plates and shells that can be used in a number of engineering contexts. It has then be decided to offer
an open source version. This work has been realized by Angels Aragones during a post-doc position
funded by the european project ITN Batwoman. Translation of matlab code into C/C++, new
functionnalities (e.g. elastically restrained boundary conditions for the circular case, imperfection
for the rectangular plate, ...) has been added and the first release of VK-gong has been possible in
March 2017.

Palaiseau, March 2017,
Cyril Touzé

1. Introduction

What is VK-gong ?

VK-gong is a numerical software for the time simulations of nonlinear (large amplitude) vibrations
of thin plates and shallow shells. The code relies on the von Kármán theory for geometrically
nonlinear vibrations, the main assumptions of which are recalled in chapter 2. In short, von Kármán
theory is developed for moderate vibrations amplitudes, it neglects in-plane and rotary inertia,
and assumes Kirchhoff-Love kinematics without shear. It covers nonetheless a large panel of
situations, for vibration amplitude up to 10-50 times the thickness, depending on the application
(static/dynamic) and the frequency range.

What are the main features ?

VK-gong relies on a modal approach for the space discretisation of the problem, in contrast to a
number of other methods such as finite elements or finite difference. The advantages of using the
modal approach are the following :
• the accuracy of the linear and nonlinear characteristics can be finely controlled and in some

cases can be considered as exact, thanks to the use of analytical expressions of mode shapes,
when available.
• the damping coefficients can be tuned at ease so that any frequency dependence of the losses

can be implemented.
• The computation of the eigenfrequencies and the nonlinear coupling coefficients, are treated

as off-line calculations that are done once and for all, once the geometry and material
parameters have been selected. This crucial step can be realized with the desired accuracy,
and is then used for each time simulation.
• Analytical treatments are pushed as far as possible to maintain the accuracy. For particular

cases where analytical solutions are available for the linear part (see e.g. the circular plate),
this leads to a refined computations of all the coefficients feeding the model.

The second main feature of the code is the use of two different numerical methods for time
integration :

12 Chapter 1. Introduction

• The Störmer-Verlet scheme (also known as leap-frog). This scheme is symplectic, second-
order accurate and conditionnally stable [14].
• An energy-conserving scheme especially designed for the case of plates with a modal

approach. The scheme is also second-order accurate and conditionnally stable [10].
VK-gong has been primarily developed in Matlab language. It has recently be translated into a

C/C++ version, so that both Matlab and C/C++ version are given to the user.

What VK-gong can (and cannot) do ?

The core of VK-gong is the expression of the linear and nonlinear characteristics (coupling
coefficients) of the von Kármán plate PDE of motions, expressed in the basis of the eigenmodes,
giving rise to a finite-dimensional system, the linear part of which is diagonal. This core can be
used for a number of applications, be they static or dynamic. For instance, the use of such an
approach for solving the buckling of circular plates is shown in [18, 20]. However in its present 1.0
version, VK-gong is only oriented toward time-domain simulations of vibrating plates with large
amplitude. The inputs to be defined for running a simulation are the following:
choice of the plate : one has to define the geometry, the material parameters, the boundary condi-

tions, the presence of an imperfection, and the damping law.
choice of the external forcing : to define the forces acting on the plate.
choice of the simulation parameters : selection of appropriate values for numerical integration.

About the plate selection, VK-gong 1.0 can handle the following cases:
geometry : only circular and rectangular plates are possible at present. Plates of arbitrary shape

are not allowed. In the two cases the thickness is assumed to be constant and is denoted as
hd . The circular geometry is then defined by its radius Rd , while the rectangular geometry is
defined by Lx and Ly.

material : as isotropic linear elasticity is assumed, the material parameters are the Young modulus
E and the Poisson ratio ν . Other behaviour laws are not allowed.

Boundary conditions : three different cases of boundary conditions are possible for the circular
plate : completely free edge, clamped edge, and elastically restrained with in-plane movable
edge. For the rectangular case, only simply-supported transverse boundary conditions with
in-plane movable edges are possible at present.

imperfection : it is possible to define a purely geometrical imperfection of the shape of the plate
without pre-stress. This allows to extend the cases treated to shallow shells.

losses : any frequency-dependent frequency law can be input to the code.
External forces are given as pointwise excitations with different temporal contents (raised

cosine for simulating an impact, harmonic sine excitation, random noise, ...). Preset values are
offered in the code, however a user can extend the code to take into account other forces.

Structure of this documentation

The documentation begins by recalling the general theory for solving the von Kármán PDE of
motions using a modal approach. Definitions af all related quantities are introduced, in a consistent
manner with the notations used in the code. In particular all the formulas explaining how to compute
all the linear and nonlinear characteristics are reviewed.

Then a full documentation explaining all the functions used in the two versions (MATLAB and
C/C++) is given so as to have a detailed view of how the code is structured. Finally a number of
examples are given. These should be a good starting point for a user to take charge of the code.

13

Words of caution
VK-gong is a code developed from a research effort. It is freely available for scientific use. It is a
typical research program which is provided "as is", with no guarantee whatsoever. The code is also
completely open. A user can be free to take some parts of the code here and there to develop his
own computations and applications, while still referencing the source VK-gong.

The computational burden associated to the simulations can be very heavy. In particular the
number of transverse modes retained in the simulations is a critical parameter and has to be taken
with care. It is generally advised to begin with small number so as to test the capacity of the
computer and slowly increase the numbers.

VK-gong has been first coded in Matlab language. Consequently the MATLAB version has
to be taken as a reference. It has been tested in a number of context and is thus provided as the
most reliable. The C version has been translated from the Matlab sources. It has not been tested in
a systematic manner as the matlab version has been. Moreover the Störmer-Verlet version is not
stabilized and, in this current version 1.0, has been found to diverge for some tuning parameters.
On the other hand the results given with the energy-conserving scheme are more reliable. Current
effort is put to solve this problems which should be fixed in the next available version.

II
2 General equations 17
2.1 Von Kármán equations
2.2 Imperfect plate case
2.3 Modal approach for the perfect plate
2.4 Eigenfrequencies of the imperfect plate

3 Circular plates . 23
3.1 Non-dimensioning of variables
3.2 Boundary conditions
3.3 Mode families and modal coupling coefficients for

some combinations of boundary conditions

4 Rectangular plates 35
4.1 Boundary conditions
4.2 Mode families and modal coupling coefficients for

some combinations of boundary conditions

5 Time integration schemes 39
5.1 Operators
5.2 Energy conserving scheme
5.3 Störmer-Verlet scheme

Theory

2. General equations

2.1 Von Kármán equations

The equations used to model the nonlinear (large amplitude) vibrations of thin plates in this work
are the so-called von Kármán equations [2, 10, 16, 17, 22, 25, 29]. Von Kármán equations can be
used as long as the following set of assumptions is fulfilled [8, 25],
• The plate thickness must be significantly smaller than the other plate dimensions.
• The Kirchhoff-Love hypotheses are fulfilled and thus, the transverse shear is neglected.
• The strain tensor is limited to the second order terms.
• in-plane and rotatory inertia are neglected so that an Airy stress function can be used.
Given a plate of volume mass density ρ , thickness h and flexural rigidity D = Eh3/12(1−ν2),

with E standing for the Young modulus and ν for the Poisson ratio, they read

ρhẅ+D∆∆w = L (w,F)+ p(x, t)−R(ẇ), (2.1a)

∆∆F =−Eh
2

L (w,w). (2.1b)

where the plate vibration is expressed by means of two main variables, the transverse dis-
placement w(x, t) and the Airy stress function F(x, t), with x denoting the space variable and t the
time. The operator ∆ represents the two dimensional Laplacian operator, p(x, t) a time-depending
excitation and R(ẇ), a generic term to express the plate damping, that can vary with frequency.

The operator L (w,F) is known as the von Kármán operator and accounts for the coupling
between the transverse and in-plane displacements. For two functions f (x) and g(x), it may be
expressed in intrinsic coordinates as

L (f ,g) = ∆ f ∆g−∇∇ f : ∇∇g (2.2)

where : denotes the doubly contracted product of two tensors.

18 Chapter 2. General equations

R Particular cases of von Kármán operator.
• Polar coordinates (θ ,r):

L (f ,g) = f,rr

(g,r
r
+

g,θθ

r2

)
+g,rr

(
f,r
r
+

f,θθ

r2

)
−2
(

f,rθ

r
+

f,θ
r2

)(g,rθ

r
+

g,θ
r2

)
(2.3)

• Cartesian coordinates (x,y):

L (f ,g) = f,xxg,yy + f,yyg,xx−2 f,xyg,xy (2.4)

2.2 Imperfect plate case
Imperfect plates are those that present a static deformation in their profile at equilibrium, either
because of their shape or due to factory defects. The variations in the plate shape may affect the
nonlinear behaviour and thus, they must be included in the model.

This can be done by redefining the transverse displacement w(x, t) in eq. (2.1) as a combination
of two terms [7, 23, 25],

w(x, t) = w0(x)+ w̃(x, t). (2.5)

As shown in fig. 2.1, w0(x) corresponds to the static displacement without pre-stress, i.e. the
imperfection height at every point, whereas w̃(x, t) equals to the dynamic transverse displacement
with respect to w0(x).

Figure 2.1: Redefinition of transverse displacement to include imperfection.

Definition eq. (2.3) is introduced in eq. (2.1). After a static equilibrium, the equations of motion
for the new unknown w̃(x, t) read:

ρh ¨̃w+D∆∆w̃ = L (w̃,F)+L (w0,F)+ p(x, t)−R(ẇ), (2.6a)

∆∆F =−Eh
2

[L (w̃, w̃)+2L (w̃,w0)] . (2.6b)

Equation (2.1) presented linear and cubic nonlinear terms. After the incorporation ot the
imperfection, new quadratic terms appear proving that the profile variation directly affects the
nonlinear behaviour of the plate.

2.3 Modal approach for the perfect plate
A modal approach is used to discretize the von Kármán equations [10]. This procedure implies
several advantages. First, it enables the introduction of a frequency dependent damping into the
model, resulting in a broader applicability of the method. This is especially interesting in sound
synthesis applications where the ear is particularly sensitive to losses and associated decay times.
It repesent also a very interesting feature as compared to e.g. finite element codes where one has

2.3 Modal approach for the perfect plate 19

to work with Rayleigh dissipation only, not offering such a broad range of applications. Second,
there is a set of parameters that can be computed off-line. This means that if the simulation must
be repeated or the accuracy must be increased, they do not have to be recalculated. Furthermore
their accuracy can be finely controlled and in general exact converged values are used, giving to the
code a great accuracy without any numerical dispersion, neither in the eigenfrequencies, nor in the
nonlinear coupling coefficients. This feature is also of paramount importance for sound synthesis
in order to obtain realistic sounds.

Let {Φk(x)}k≥1 be the eigenmodes of the transverse displacement and {Ψi(x)}i≥1 the eigen-
modes for the Airy stress function, obtained by solving the eigenproblems

(
∆∆∆∆∆∆−ξ

4)
ΦΦΦ = 0, (2.7a)(

∆∆∆∆∆∆−ζ
4)

ΨΨΨ = 0. (2.7b)

As we first focus on the perfect plate case, the main variable for the transverse displacement is
w(x, t), which is expanded together with the Airy stress function F(x, t) as

w(x, t) = SW

NΦ

∑
p=1

Φp(x)
‖Φp‖

qp(t), (2.8a)

F(x, t) = SF

NΨ

∑
p=1

Ψp(x)
‖Ψp‖

ηp(t), (2.8b)

where qp(t) and ηp(t) are respectively the transverse and in-plane modal variables and SW

and SF the normalization constants of the family modes, i.e. Φ̄ = SW Φk(x)/‖Φk‖ and Ψ̄ =
SFΨk(x)/‖Ψk‖. The values NΦ and NΨ determine the number of modes included in the truncated
series. These modal basis will be computed differently depending on the plate shape and the
boundary conditions. This will be seen in the following chapters.

After replacing w(x, t) and F(x, t) by eq. (2.8), eq. (2.1a) and eq. (2.1b) are multiplied respec-
tively by Φs and Ψs and integrated over the plate surface S, leading to the temporal system of
Ordinary Differential Equations (ODEs),

q̈s +ω
2
s qs +2µsωsq̇s =

SF

ρh

NΦ

∑
k=1

NΨ

∑
l=1

Es
klqkηl + ps(t), (2.9a)

ηl =−
Eh
2ζ 4

l

S2
W

SF

NΦ

∑
m,n

H l
mnqmqn. (2.9b)

with ωs = ξ 2
s standing for the angular frequency of transverse mode s, µs the damping coefficient

associated to mode s and ζl the eigenvalue correspondent to in-plane mode l. Es
kl and H l

mn are the
modal coupling coefficients defined in the next section. Note that the external force p(t) has also
been expressed in modal terms as

ps(t) =
1

ρhSW‖Φs‖

∫
S

p(x, t)Φs(x)dS. (2.10)

20 Chapter 2. General equations

2.3.1 Coupling coefficients: HHH and ΓΓΓ

The modal approach also leads to the introduction of the modal coupling coefficients Es
k,l and H l

m,n,
defined as

Es
kl =

∫
S ΦsL (Φk,Ψl)dS
‖Φs‖‖Φk‖‖Ψl‖

, (2.11a)

H l
mn =

∫
S ΨlL (Φm,Φn)dS
‖Ψl‖‖Φm‖‖Φn‖

, (2.11b)

which quantify the non-linear coupling between transverse and in-plane triads of modes. Note that
thanks to the bilinearity of the von Kármán operator, the symmetry allows that H l

mn = H l
nm. In

addition, depending on the boundary conditions at the edge of the plate, it may be fulfilled that
Es

kl = H l
sk [10, 25]. This is the case of all the configurations considered in this work.

On the other hand, although for some time stepping schemes both equations in eq. (2.9) are
necessary, a closed form of the system, only depending on the transverse displacement w(x), can
be obtained with the substitution of ηl in eq. (2.9a) by eq. (2.9b),

q̈s +ω
2
s qs +2µsωsq̇s =−

ES2
w

ρ

NΦ

∑
k,m,n=1

[
NΨ

∑
l=1

Es
klH

l
mn

2ζ 4
l

]
qkqmqn + ps(t) (2.12)

leading to the definition of the fourth-order tensor,

Γ
s
kmn =

NΨ

∑
l=1

Es
klH

l
mn

2ζ 4
l

. (2.13)

2.3.2 Modal approach for imperfect plates
In order to introduce the imperfection in the modal equations, the static displacement w0(x) is
also expressed in terms of the transverse mode basis by projecting the profile on this family of
modes [7],

w0(x) = SW

N0

∑
p=1

Φp(x)
‖Φp‖

ap + zg (2.14)

where the projection coefficients ap and the center of mass zg are computed thanks to the
orthogonality property of the eigenmodes,

ap =
∫∫

S
w0(x)Φp(x) dS, (2.15)

zg =

∫∫
S w0(x) dS

Ap
, (2.16)

where S is the plate surface domain and Ap is the plate area.
The same procedure used for the perfect plate is now used in eq. (2.6), adding in this case the

definition of w0 in eq. (2.14). The resulting expression is

q̈s +ω
2
s qs +2µsωsq̇s =

SF

ρh

NΦ

∑
k=1

NΨ

∑
l=1

Es
kl(qk +ak)ηl + ps(t) (2.17a)

ηl =−
Eh
2ζ 4

l

S2
W

SF

NΦ

∑
m,n

H l
mn (qmqn +2qman) . (2.17b)

Observe that in case of a perfect plate, the projection coefficients are null and the perfect plate
eqs. (2.9a) and (2.9b) are recovered.

2.4 Eigenfrequencies of the imperfect plate 21

2.4 Eigenfrequencies of the imperfect plate
The eigenfrequencies of the imperfect plate can be calculated from the eigenfrequencies of the
equivalent perfect plate [7].

Let

A = {εα
s
m +ω

2
s δsm}, (2.18)

denote the linear part of (2.12) in matrix form with

α
s
m =

NΦ

∑
m

NΦ

∑
n

2Γ
s
kmnakan, (2.19)

δsm the usual Kronecker delta symbol and ε a constant that depends on the shape and materials of
the plate. (See section 5.2.)

The diagonalization of A by means of

{Ωsδsk}s,k∈[1,NΦ] = P−1AP (2.20)

provides the eigenfrequencies of the imperfect plate in Ωs and the mode shapes in P.
One can observe in eq. (2.20) that the variation of the imperfect plate’s eigenfrequencies with

respect to the perfect plate not only depends on the magnitude of the imperfection (expressed
through the {ap} factors), but also on the coupling coefficients that involve the projected modes via
the Γs

kmn.

3. Circular plates

Besides material parameters and thickness, circular plates are characterized by their radius Rd .
In this chapter, particularities of circular plates are explained and followed by the summary of
boundary conditions included in the code.

3.1 Non-dimensioning of variables

The quantities involved in the model of circular plates are of significantly different orders of
magnitude. For this reason, their redefinition in a dimensionless form is advised to avoid numerical
problems.

Amongst the multiple possibilities to apply the non-dimensioning of variables, the simplest one
is by using the plate thickness h and radius Rd as follows [6, 7],

w̃ = h ¯̃w, w0 = hw̄0, r = Rd r̄. (3.1)

Accordingly, for the Airy stress function F , time variable t, input force p and modal damping
µs,

F̃ = Eh3 ¯̃F, t =

√
ρhR4

d
D

t̄, p =
h4E
R4

d
p̄, µ =

Eh3

2R2
d

√
ρh
D

c̄. (3.2)

where the bars (¯) denote dimensionless variables.
Replacing the new definitions in (2.12) and omitting the over-bars to simplify the notation, the

equations of motion of the imperfect plate can be rewritten as

¨̃w+∆∆w̃ = ε [L (w̃,F)+L (w0,F)]+ p(r,θ , t)−2c ˙̃w, (3.3a)

∆∆F =−1
2
[L (w̃, w̃)+2L (w̃,w0)] (3.3b)

24 Chapter 3. Circular plates

with ε = 12(1−ν2).
Equation (2.18) can be used to compute the dimensionless eigenfrequencies of the imperfect

plate by using ε instead of εd .
The use of dimensionless variables implies a positive side effect. Computation of H and

Γ coupling coefficients as well as pairs of eigenmodes and eigenfrequencies can be made once
an reused for every plate with the same boundary conditions, with the sole application of a
multiplicative factor.

3.2 Boundary conditions

This section recalls the equations that must be fulfilled to reproduce the boundary conditions in
every direction of displacement. For further details, the reader can refer to [12, 25, 29, 30].

3.2.1 General boundary conditions

Boundary conditions in term of forces and displacements

We use the classical orthonormal basis for the cylindrical coordinate system (er,eθ ,ez), with er,
eθ respectively normal and tangent to the circular boundary of the plate and ez normal to the plate
mid-plane.

In the most general case, the boundary is subjected to an external forcing, represented by a
force field Teez +Ne and a moment field Me, with Ne and Me two vectors parallel to the plate
mid-plane. One can also impose an in-plane displacement ue, a transverse displacement we or a
normal rotation of the edge ϕre.

At any point of the plate boundary, the boundary conditions write:

u = ue or Ner = Ne (3.4a,b)

w = we or Vr = Qr +
1
r

∂Mrθ

∂θ
= Te +

1
r

∂

∂θ
(Me · eθ) , (3.4c,d)

∂w
∂ r

= ϕre or Mrr = Me · er. (3.4e,f)

where Qr is the internal shear force, Vr is the Kirchhoff shear force, N is the membrane force
tensor and M the bending moment tensors, whose useful components write:

Nrr =
1
r

∂F
∂ r

+
1
r2

∂ 2F
∂θ 2 , Nrθ =−1

r
∂ 2F

∂ r∂θ
+

1
r2

∂F
∂θ

; (3.5a)

Qr =−D
∂∇2w

∂ r
+Nrr

∂w
∂ r

+
Nrθ

r
∂w
∂θ

; (3.5b)

Mrr =−D
(

∂ 2w
∂ r2 +

ν

r
∂w
∂ r

+
ν

r2
∂ 2w
∂θ 2

)
, Mrθ =−D(1−ν)

(
1
r

∂ 2w
∂ r∂θ

− 1
r2

∂w
∂θ

)
(3.5c)

In-plane simple boundary conditions in term of F and w

The in-plane part of the above boundary conditions, in simple cases of free or immovable edge, can
be rewritten as sufficient conditions in term of F only [25]:
• Free edge (Nrr = Nrθ = 0 on the boundary):

F =
∂F
∂ r

= 0. (3.6)

3.2 Boundary conditions 25

• Immovable edge, (u = 0 on the boundary):

∂ 2F
∂ r2 −ν

(
1
r

∂F
∂ r

+
1
r2

∂ 2F
∂θ 2

)
+N1(w) = 0, (3.7a)

∂ 3F
∂ r3 +

1
r

∂ 2F
∂ r2 −

1
r2

∂F
∂ r

+
2+ν

r2
∂ 3F

∂ r∂θ 2 −
3+ν

r3
∂ 2F
∂θ 2 +N2(w)+NF(∂w/∂ r) = 0.

(3.7b)

with N1, N2 and NF nonlinear functions of the transverse displacement w and slope and
∂w/∂ r [25]).

For more general cases, for instance in the case of an elastic edge that imposes a relation between
N and u, the corresponding boundary conditions include nonlinear terms functions of w.

3.2.2 Particular boundary conditions
Due to some nonlinear terms in the boundary conditions (the terms N1(w), N2(w) and NF(∂w/∂ r)
in Eqs. (3.7a,b) and the term Nvgradw in the expression of Qr in Eq. (3.5b)), only the ones for
which those terms vanish are considered here.

Completely free edge
The external loads vanish at the plate edge (Nrr = Nrθ = Mrr = Qr +∂Mrθ/(r∂θ) = 0), so that:

F =
∂F
∂ r

= 0 (3.8a)

∂ 2w
∂ r2 +ν

(
1
r

∂w
∂ r

+
1
r2

∂ 2w
∂θ 2

)
= 0, (3.8b)

∂ 3w
∂ r3 +

1
r

∂ 2w
∂ r2 −

1
r2

∂ 2

∂ r
+

2−ν

r2
∂ 3w

∂ r∂θ 2 −
3−ν

r3
∂ 2w
∂θ 2 = 0. (3.8c)

Completely clamped edge
The displacements vanish at the plate edge (ur = uθ = w = ∂w/∂ r = 0), so that:

∂ 2F
∂ r2 −ν

(
1
r

∂F
∂ r

+
1
r2

∂ 2F
∂θ 2

)
= 0, (3.9a)

∂ 3F
∂ r3 +

1
r

∂ 2F
∂ r2 −

1
r2

∂F
∂ r

+
2+ν

r2
∂ 3F

∂ r∂θ 2 −
3+ν

r3
∂ 2F
∂θ 2 = 0, (3.9b)

w =
∂w
∂ r

= 0. (3.9c)

Transversely clamped and in-plane free edge
The transverse displacement and slope vanish at the plate edge (w = ∂w/∂ r = 0) whereas the
membrane displacements are free (Nrr = Nrθ), so that :

F =
∂F
∂ r

= 0, (3.10a)

w =
∂w
∂ r

= 0. (3.10b)

Transversely elastic and in-plane free edge
Some distributed stiffness in translation KT (expressed in [N·m/m/rad=N·rad−1]) and in rotation KR

(expressed in [N/m/m=N·m−2]) are prescribed at the edge of the plate, so that the bending moment

26 Chapter 3. Circular plates

Mrr and the Kirchhoff shear force Vr are related to their conjugated displacement variables, the
deflection and the slope:

Mrr = KR
∂w
∂ r

, Vr =−KT w. (3.11)

To avoid the nonlinear terms in the equations, the in-plane boundary conditions must be prescribed
free. On then obtains:

F =
∂F
∂ r

= 0, (3.12a)

D
[

∂ 3w
∂ r3 +

1
r

∂ 2w
∂ r2 −

1
r2

∂ 2

∂ r
+

2−ν

r2
∂ 3w

∂ r∂θ 2 −
3−ν

r3
∂ 2w
∂θ 2

]
−KT w = 0, (3.12b)

D
[

∂ 2W
∂ r2 +ν

(
1
r

∂W
∂ r

+
1
r2

∂ 2W
∂θ 2

)]
+Kr

∂w
∂ r

= 0. (3.12c)

3.3 Mode families and modal coupling coefficients for some combinations of
boundary conditions
Throughout this section, the modal families for the previous boundary conditions are computed
by solving eigenproblems in eq. (2.7). The most common combinations of transverse / in-plane
/ rotational boundary conditions are revisited and some examples of coupling coefficients are
included. Note that these computations correspond to perfect plates.

3.3.1 Circular plate with free edge
Given a plate with free edge, eqs. (3.8a) to (3.8c) must be fulfilled. Regarding the transverse
direction, equations eqs. (3.8b) and (3.8c) are rewritten in terms of the eigenmodes {Φi(x)}i≥1 in
dimensionless form, so that for all θ and t,

ΦΦΦ ,rr +νΦΦΦ ,r +νΦΦΦ ,θθ = 0 at r = 1, (3.13)

ΦΦΦ ,rrr +ΦΦΦ ,rr−ΦΦΦ ,r +(2−ν)ΦΦΦ ,rθθ − (3−ν)ΦΦΦ ,θθ = 0 at r = 1, (3.14)

ΦΦΦ(r = 0) is bounded. (3.15)

Note that the term Nw in eq. (3.8c) is canceled because of eq. (3.8a).
Solutions can be separated in r and θ , so that

ΦΦΦ0n(r,θ) = R f
0n(r) for k = 0, (3.16)

ΦΦΦkn1(r,θ)
ΦΦΦkn2(r,θ)

∣∣∣∣= R f
kn(r)

∣∣∣∣coskθ

sinkθ
for k > 0, (3.17)

where

R f
kn(r) = κkn

[
Jk (ξknr)−

J̃ f
k (ξkn)

Ĩ f
k (ξkn)

Ik (ξknr)

]
(3.18)

with Jk(x) being the k-th order Bessel function of the first kind and Ik(x) = Jk(ix) the k-th order
modified Bessel function of the first kind. κkn is the normalization constant of mode Φ set to fulfill
‖Φkn‖= 1. Special terms J̃ f

k (x) and Ĩ f
k (x) are computed as follows,

3.3 Mode families and modal coupling coefficients for some combinations of
boundary conditions 27

J̃ f
k (x) = x2Jk−2(x)+ x(ν−2k+1)Jk−1(x)+ k (k+1)(1−ν)Jk(x) (3.19)

Ĩ f
k (x) = x2Ik−2(x)+ x(ν−2k+1) Ik−1(x)+ k (k+1)(1−ν) Ik(x) (3.20)

The eigenvalues ξkn are found as the ñ-th solution of

Ĩ f
k (ξ)

[
ξ

3Jk−3 (ξ)+ξ
2 (4−3k)Jk−2 (ξ)+ξ k (k (1+ν)−2)Jk−1 (ξ)

+k2 (1−ν)(1+ k)Jk (ξ)
]
− J̃ f

k (ξ)
[
ξ

3Ik−3 (ξ)+ξ
2 (4−3k) Ik−2 (ξ)

+ξ k (k (1+ν)−2) Ik−1 (ξ)+ k2 (1−ν)(1+ k) Ik (ξ)
]
= 0 (3.21)

where k is the number of nodal diameters and n the number of nodal circles. Given that the
edge is set in free condition, for k = 1, n = ñ, whereas for k 6= 1, n = ñ− 1. In addition, for
every frequency associated to a mode with k 6= 0, i.e. a non-axisymmetric mode, there are two
independent modes. These are known as the two preferential configurations, sharing the same radial
dependence but differing in the position of nodal diameters. In perfect plates, the mode shapes are
shifted π/2 rad and for this reason, the two configurations are denoted cos or sin.

Table 3.1 includes the data related to the first 20 modes of a plate with a free edge made of a
material with Poisson ratio ν = 0.38. Values are shown in dimensionless form.

Index ξξξ kkk nnn Conf. ωωω = ξξξ
2

1, 2 2.2568 2 0 cos / sin 5.0933
3 3.0290 0 1 cos 9.1751

4, 5 3.4493 3 0 cos / sin 11.8973
6, 7 4.5361 1 1 cos / sin 20.5762
8, 9 4.5798 4 0 cos / sin 20.9744

10, 11 5.6814 5 0 cos / sin 32.2777
12, 13 5.9341 2 1 cos / sin 35.2134

14 6.2138 0 2 cos 38.6118
15, 16 6.7654 6 0 cos / sin 45.7706
17, 18 7.2647 3 1 cos / sin 52.7766
19, 20 7.7419 1 2 cos / sin 59.9374

Table 3.1: Transverse modes and dimensionless frequencies for a plate with a free edge and
ν = 0.38

Analogously, for the in-plane family of modes, eq. (3.8a) is written in dimensionless form in
terms of {Ψi(x)}i≥1. Thus, Ψ must fulfill for all θ and t,

ΨΨΨ = 0 at r = 1, (3.22)

ΨΨΨ ,r = 0 at r = 1, (3.23)

ΨΨΨ(r = 0) is bounded. (3.24)

Mode shapes can be written separately in terms of r and θ ,

ΨΨΨ 0m(r,θ) = S f
0m(r) for l = 0, (3.25)

ΨΨΨ lm1(r,θ)
ΨΨΨ lm2(r,θ)

∣∣∣∣= S f
lm(r)

∣∣∣∣cos lθ
sin lθ

for l > 0, (3.26)

28 Chapter 3. Circular plates

with

S f
lm(r) = λlm

[
Jl (ζlmr)− Jl (ζlm)

Il (ζlm)
Il (ζlmr)

]
(3.27)

and λlm, the normalization constant for modes Ψ that fulfills ‖Ψ‖= 1. The values of ζlm are found
as the m-th solution of

Jl−1(ζ)Il(ζ)− Il−1(ζ)Jl(ζ) = 0. (3.28)

Unlike the transverse modes, in this case, l and m correspond to the numbers of nodal diameters
and circles respectively. Some dimensionless values are included in table 3.2.

Index ξξξ kkk nnn Conf. ωωω = ξξξ
2

1 3.1962 0 1 cos 10.2158
2, 3 4.6109 1 0 cos / sin 21.2604
4, 5 5.9057 2 0 cos / sin 34.8770
6 6.3064 0 2 cos 39.7711

7, 8 7.1435 3 0 cos / sin 51.0300
9, 10 7.7993 1 1 cos / sin 60.8287
11, 12 8.3466 4 0 cos / sin 69.6658
13, 14 9.1969 2 1 cos / sin 84.5826

15 9.4395 0 3 cos 89.1041
16, 17 9.5257 5 0 cos / sin 90.7390
18, 19 10.5367 3 1 cos / sin 111.0214

20 10.6870 6 0 cos 114.2125

Table 3.2: In-plane modes and dimensionless frequencies for a plate with free edge

[[[iii,,, jjj,,,kkk]]] HHH i
jk

[1,1,1] −19.8615
[2,4,1] −26.0895
[1,4,2] 0
[2,1,4] −26.0895
[1,3,3] 42.1456
[3,8,5] 76.4045
[2,9,5] −76.4045

[10,10,10] 0

Table 3.3: Some H coefficients for a plate with a free edge and Poisson ratio ν = 0.38

3.3.2 Circular plate with clamped edge

The equations that must be fulfilled for a plate with a clamped edge are eqs. (3.10a) and (3.10b).
The equations for the transverse and rotational displacement are equivalent to eq. (3.8a) of the
free-edge plate. Therefore, the mode shapes in the transverse direction of the clamped plate are
analogous to eqs. (3.26) and (3.27). They are rewritten here for the sake of completeness.

3.3 Mode families and modal coupling coefficients for some combinations of
boundary conditions 29

[[[ppp,,,qqq,,,rrr,,,sss]]] ΓΓΓ
p
qrs

[1,1,1,1] 1.8983
[2,2,2,2] 1.8983
[3,3,3,3] 8.5747
[1,2,3,4] 0
[4,3,2,1] 0
[1,1,2,2] 3.9121e−06
[1,2,2,1] 1.8983
[1,2,1,2] 3.9121e−06

Table 3.4: Some Γ coefficients for a plate with a free edge and Poisson ratio ν = 0.38

ΦΦΦ0n(r,θ) = Rc
0n(r) for k = 0, (3.29)

ΦΦΦkn1(r,θ)
ΦΦΦkn2(r,θ)

∣∣∣∣= Rc
kn(r)

∣∣∣∣coskθ

sinkθ
for k > 0, (3.30)

Rc
kn(r) = λkn

[
Jk (ξknr)− Jk (ξkn)

Ik (ξkn)
Ik (ξknr)

]
(3.31)

Jk−1(ξ)Ik(ξ)− Ik−1(ξ)Jk(ξ) = 0 (3.32)

On the other hand, the equation for the in-plane direction eq. (3.10a) is similar to eq. (3.8c) but
they differ in the sign previous to ν . Thus, mode shapes must be recomputed. For all θ and t,

ΨΨΨ ,rr +νΨΨΨ ,r +νΨΨΨ ,θθ = 0 at r = 1, (3.33)

ΨΨΨ ,rrr +ΨΨΨ ,rr−ΨΨΨ ,r +(2+ν)ΨΨΨ ,rθθ − (3+ν)ΨΨΨ ,θθ = 0 at r = 1, (3.34)

ΨΨΨ(r = 0) is bounded. (3.35)

The solutions of this system of equations are

ΨΨΨ 0n(r,θ) = Sc
0n(r) for l = 0, (3.36)

ΨΨΨ lm1(r,θ)
ΨΨΨ lm2(r,θ)

∣∣∣∣= Sc
lm(r)

∣∣∣∣coskθ

sinkθ
for l > 0, (3.37)

where

Sc
lm(r) = κlm

[
Jl (ζlmr)−

J̃c
l (ζlm)

Ĩc
l (ζlm)

Il (ζlmr)
]

(3.38)

and terms J̃c
l (x) and Ĩc

l (x) are computed as follows,

J̃c
l (x) = x2Jl−2(x)+ x(−ν−2l +1)Jl−1(x)+(l (l +1)+ν l (1− l))Jl(x) (3.39)

Ĩc
l (x) = x2Il−2(x)+ x(−ν−2l +1) Il−1(x)+(l (l +1)+ν l (1− l)) Il(x) (3.40)

30 Chapter 3. Circular plates

The eigenvalues ζlm are found as the m̃-th solution of

Ĩc
l (ζ)

[
ζ

3Jl−3 (ζ)+ζ
2 (4−3l)Jl−2 (ζ)+ζ l (l (1−ν)−2)Jl−1 (ζ)

+l2 (1+ l)(1+ν)Jl (ζ)
]
− J̃c

l (ζ)
[
ζ

3Il−3 (ζ)+ζ
2 (4−3l) Il−2 (ζ)

+ζ l (l (1−ν)−2) Il−1 (ζ)+ l2 (1+ l)(1+ν)Il (ζ)
]
= 0 (3.41)

First 20 values are displayed in table 3.5.

Index ξξξ kkk nnn Conf. ωωω = ξξξ
2

1, 2 2.3032 2 1 cos / sin 5.3047
3 2.6251 0 1 cos 6.8912

4, 5 3.6549 3 1 cos / sin 13.3584
6, 7 4.3582 1 1 cos / sin 18.9938
8, 9 4.8712 4 1 cos / sin 23.7286

10, 11 5.8741 2 2 cos / sin 34.5054
12, 13 6.0358 5 1 cos / sin 36.4304

14 6.0658 0 2 cos 36.7944
15, 16 7.1715 6 1 cos / sin 51.4300
17, 18 7.2814 3 2 cos / sin 53.0190
19, 20 7.6418 1 2 cos / sin 58.3975

Table 3.5: In-plane modes and dimensionless frequencies for a plate with clamped edge

[[[iii,,, jjj,,,kkk]]] HHH i
jk

[1,1,1] 0
[1,4,1] −12.0352
[1,1,4] −12.0352
[10,7,2] 206.3190
[10,2,7] 206.3190
[1,10,10] −79.2939
[2,9,10] 79.2939

[10,10,10] −420.4716

Table 3.6: Some H coefficients for a plate with a clamped edge and Poisson ratio ν = 0.38

3.3.3 Circular plate with elastic edge in the transverse direction and free edge in the
in-plane direction
In this case, elastic edge is set for the transverse direction combined with the free edge boundary
conditions in the in-plane direction. ???? are rewritten in terms of {Φi(x)}i≥1. For all θ and t,

ΦΦΦ ,rr +νΦΦΦ ,r +νΦΦΦ ,θθ +
KR

D
ΦΦΦ ,r = 0 at r = 1, (3.42)

ΦΦΦ ,rrr +ΦΦΦ ,rr−ΦΦΦ ,r +(2−ν)ΦΦΦ ,rθθ − (3−ν)ΦΦΦ ,θθ −
KT

D
ΦΦΦ = 0 at r = 1, (3.43)

ΦΦΦ(r = 0) is bounded. (3.44)

3.3 Mode families and modal coupling coefficients for some combinations of
boundary conditions 31

[[[ppp,,,qqq,,,rrr,,,sss]]] ΓΓΓ
p
qrs

[1,1,1,1] 9.0374
[2,2,2,2] 64.4130
[3,3,3,3] 64.4130
[1,2,3,4] 0
[4,3,2,1] 0
[1,1,2,2] 4.3122
[1,2,2,1] 20.5191
[1,2,1,2] 4.3122

Table 3.7: Some Γ coefficients for a plate with a clamped edge and Poisson ratio ν = 0.38

Solutions can be separated in r and θ , so that

ΦΦΦ0n(r,θ) = Re
0n(r) for k = 0, (3.45)

ΦΦΦkn1(r,θ)
ΦΦΦkn2(r,θ)

∣∣∣∣= Re
kn(r)

∣∣∣∣coskθ

sinkθ
for k > 0, (3.46)

where

Re
kn(r) = κkn

[
Jk (ξknr)−

J̃e
k (ξkn)

Ĩe
k (ξkn)

Ik (ξknr)
]

(3.47)

with J̃e
k (x) and Ĩe

k (x) computed as,

J̃e
k (x) = x2Jk−2(x)+ x(ν−2k+1)Jk−1(x)+

(
k (k+1)(1−ν)− KR

D
k
)

Jk(x) (3.48)

Ĩe
k (x) = x2Ik−2(x)+ x(ν−2k+1) Ik−1(x)+

(
k (k+1)(1−ν)− KR

D
k
)

Ik(x) (3.49)

The eigenvalues ξkn are found as the ñ-th solution of

Ĩe
k (ξ)

[
ξ

3Jk−3 (ξ)+ξ
2 (4−3k)Jk−2 (ξ)+ξ k (k (1+ν)−2)Jk−1 (ξ)

+

(
k2 (1−ν)(1+ k)− KT

D

)
Jk (ξ)

]
− J̃e

k (ξ)
[
ξ

3Ik−3 (ξ)+ξ
2 (4−3k) Ik−2 (ξ)

+ξ k (k (1+ν)−2) Ik−1 (ξ)+

(
k2 (1−ν)(1+ k)− KT

D

)
Ik (ξ)

]
= 0 (3.50)

Similarly to the free case, the number of nodal circles n corresponds to n = ñ for k = 1 and to
n = ñ−1 for k 6= 1.

Note that when KR = KT = 0, the above equations correspond to eqs. (3.18) to (3.21) for a
free edge. Analogously, when KR = KT = ∞, ???? can be rewritten to obtain the equation for the
clamped case.

In order to generalize results, the rotational KR and transverse KT stiffness can be normalized in
terms of the flexural rigidity D, such that

KR =
KR

D
, (3.51a)

KT =
KT

D
. (3.51b)

32 Chapter 3. Circular plates

Table 3.8 contains the first eigenmodes and dimensionless frequencies for a plate with Poisson
ratio ν = 0.38 and normalized stiffnesses KR = 10 and KT = 1000.

Index ξξξ kkk nnn Conf. ωωω = ξξξ
2

1 2.7477 0 1 cos 7.5498
2, 3 4.0176 1 1 cos / sin 16.1412
4, 5 5.2448 2 1 cos / sin 27.5075

6 5.6130 0 2 cos 31.5062
7, 8 6.4487 3 1 cos / sin 41.5851
9, 10 7.0689 1 2 cos / sin 49.9688
11, 12 7.6335 4 1 cos / sin 58.2707
13, 14 8.4501 2 2 cos / sin 71.4042

15 8.6829 0 3 cos 75.3928
16, 17 8.8024 5 1 cos / sin 77.4822
18, 19 9.7822 3 2 cos / sin 95.6908

20 9.9578 6 1 cos 99.1583

Table 3.8: Transverse modes and dimensionless frequencies for a plate with an elastic edge,
KR = 10, KT = 1000 and ν = 0.38

[[[iii,,, jjj,,,kkk]]] HHH i
jk

[1,1,1] 26.9817
[5,3,2] 126.2545
[5,2,3] 126.2545
[8,8,6] −451.6667
[8,6,8] −451.6667
[6,8,8] 434.6719
[8,1,10] 0
[1,10,8] 0

Table 3.9: Some H coefficients for a plate with an elastic edge, distributed rotational stiffness
KR = 10, distributed translational stiffness KT = 1000 and Poisson ratio ν = 0.38

3.3 Mode families and modal coupling coefficients for some combinations of
boundary conditions 33

[[[ppp,,,qqq,,,rrr,,,sss]]] ΓΓΓ
p
qrs

[1,1,1,1] 3.6068
[2,2,2,2] 19.7141
[3,3,3,3] 19.7141
[1,2,3,4] 0
[4,3,2,1] 0
[7,8,9,10] −7.9968
[7,10,8,9] 7.9968
[7,9,8,10] −7.9968

Table 3.10: Some GGG coefficients for a plate with an elastic edge, distributed rotational stiffness
KR = 10, distributed translational stiffness KT = 1000 and Poisson ratio ν = 0.38

4. Rectangular plates

Rectangular plates are defined by the length of their sides Lx and Ly.

4.1 Boundary conditions

This section summarizes the equations for the boundary conditions of the rectangular plate. For
further details refer to [25].

Let (n,τττ) be respectively the normal and tangent unitary vectors with respect to the plate
boundary and s the coordinate along the edge (s = x,y depending on the edge considered).

The only case treated in VK-Gong is the simply supported case, for which the plate is in-plane
free (Nnn = Nnτ = 0), the transverse displacement is blocked (w = 0) and the normal angle is free
to move (Mnn = 0). This leads to the following boundary conditions, in any of the four edges of the
plate:

F =
∂F
∂n

= 0, (4.1a)

w = 0, (4.1b)

∂ 2w
∂n2 +ν

∂ 2w
∂ s2 = 0. (4.1c)

Notice that in this case, the nonlinear term NF(∂w/∂ r) in Eq. (3.7b) is zero because of the zero
curvature of the edge (Eq. (31) of [25]) so that the boundary conditions are fully linear.

4.2 Mode families and modal coupling coefficients for some combinations of
boundary conditions

This section revisits the computation of the mode families for the boundary conditions included in
the code.

36 Chapter 4. Rectangular plates

4.2.1 Simply supported edge
A simply supported plate is characterized by being fixed in the direction of support and free in the
others. Although some literature also includes the fixed edge for the in-plane direction [1]. Thus,
the equations that must be fulfilled are ??????.

For the transverse direction, the family of mode that solves the problem in eq. (2.7a), is [9, 10],

Φk(x) = sin
kxπx
Lx

sin
kyπy
Ly

(4.2)

where kx and ky are integers and correspond to the number of nodal lines in the mode shape.
The angular eigenfrequency ωk is obtained with

ω
2
k =

D
ρh

[(
kxπ

Lx

)2

+

(
kyπ

Ly

)2
]2

. (4.3)

On the in-plane direction, in order to simplify the computations, the boundary conditions are
restricted to

F = F,n = 0 ∀x ∈ δS. (4.4)

This way, the problem becomes equivalent to the clamped edge case in the transverse direction
and thus, the Rayleigh-Ritz method can be used to solve it [10]. The mentioned procedure consists
on transforming the continuous eigenvalue problem in eq. (2.7b) into the discrete domain so that it
can be solved by a common eigenvalue routine. For that, a generic eigenmode Ψk(x) is rewritten as
a series expansion

Ψk(x) =
NΛ

∑
n=1

anΛn(x), (4.5)

where an are unknown weighting coefficients and Λn is a set of functions specifically chosen
for the problem. In this case,

Λn = Xn1(x)Yn2(y), (4.6)

with

Xn1(x) = cos
(

n1πx
Lx

)
+

15(1+(−1)n1)

L4
x

x4− 4(8+7(−1)n1)

L3
x

x3+
6(3+2(−1)n1)

L2
x

x2−1, (4.7)

and analogous for Yn2(y).
The values of an along with the eigenvalues ζ 4

k are found by solving the eigenproblem[10, 12]

Ka = ζ
4Ma, (4.8)

where K and M are respectively the stiffness and mass matrices with dimensions Λn×Λn. They
are defined as

K(i, j) = K(mn, pq) =
∫ Lx

0
X ′′m(x)X

′′
p (x)dx

∫ Ly

0
Yn(y)Yq(y)dy

+
∫ Lx

0
Xm(x)Xp(x)dx

∫ Ly

0
Y ′′n (y)Y

′′
q (y)dy+2

∫ Lx

0
X ′m(x)X

′
p(x)dx

∫ Ly

0
Y ′n(y)Y

′
q(y)dy (4.9)

4.2 Mode families and modal coupling coefficients for some combinations of
boundary conditions 37
and

M(i, j) = M(mn, pq) =
∫ Lx

0
Xm(x)Xp(x)dx

∫ Ly

0
Yn(y)Yq(y)dy. (4.10)

The integrals in eqs. (4.9) and (4.10) can be calculated analytically, with

∫ Lx

0
X ′′m(x)X

′′
p (x)dx=


720/L3

x if m = p = 0(
π4m4−672(−1)m−768

)
/
(
2L3

x
)

if m = p 6= 0
0 if m or p = 0 and m 6= p
−24(7(−1)m +7(−1)p +8(−1)m(−1)p +8)/L3

x otherwise

(4.11)

∫ Lx
0 Xm(x)Xp(x)dx

=



10Lx/7 if m = p = 0
67Lx/70− (−1)mLx/35−768Lx/

(
π4m4

)
−672(−1)mLx/

(
π4m4

)
if m = p 6= 0

3Lx ((−1)p +1)
(
π4 p4−1680

)
/
(
14π4 p4

)
if m = 0 and p 6= 0

3Lx ((−1)m +1)
(
π4m4−1680

)
/
(
14π4m4

)
if p = 0 and m 6= 0

−
(
Lx
(
11760(−1)m +11760(−1)p−16π4m4 +13440(−1)m(−1)p+

(−1)mπ4m4 +(−1)pπ4m4−16(−1)m(−1)pπ4m4 +13440
))

/
(
70π4m4

)
−
(
Lx
(
13440m4 +11760(−1)mm4 +11760(−1)pm4

+13440(−1)m(−1)pm4
))

/
(
70π4m4 p4

)
otherwise

(4.12)

∫ Lx
0 X ′′m(x)Xp(x)dx

=



−120/(7Lx) if m = p = 0
−
(
768π2m2−47040(−1)m +35π4m4 +432(−1)mπ2m2

−53760)/
(
70Lxπ2m2

)
if m = p 6= 0

−
(
60((−1)p +1)

(
π2 p2−42

))
/
(
7Lxπ4 p4

)
if m = 0 and p 6= 0

−
(
60((−1)m +1)

(
π2m2−42

))
/
(
7Lxπ4m4

)
if p = 0 and m 6= 0(

24
(
m2 + p2

)
(7(−1)m +7(−1)p +8(−1)m(−1)p +8)

)
/
(
Lxπ2m2 p2

)
−((108(−1)m +108(−1)p +192(−1)m(−1)p +192))/(35Lx) otherwise

(4.13)

and similarly for the integrals involving the functions Y (x).

5. Time integration schemes

The use of a modal approach as shown in chapter 2, provides a spatial discretization of the von
Kármán equations and reduces the problem to a system of coupled Ordinary Differential Equations
which are time dependent.

This chapter presents the two methods that are implemented in VK-Gong. The first one respects
the conservation of energy whereas the second does not but implies lower computational cost. Prior
to that, the operators used in their developing are introduced.

5.1 Operators
The following time schemes make use of a set of operators acting on the state vector q(n) at time
step n [3, 12].

The backward et− and forward et+ shift operators are

et−q(n) = q(n−1), et+q(n) = q(n+1). (5.1)

Backward δt−, centered δt· and forward δt+ approximations to first order time derivatives,

δt− ≡
1
k
(1− et−), δt· ≡

1
2k

(et+− et−), δt+ ≡
1
k
(et+−1), (5.2)

where k = 1/ fs is the time step corresponding to the sampling frequency fs. They can be
combined to obtain an approximation to the second order derivative δtt ,

δtt ≡ δt+δt− =
1
k2 (et+−2+ et−). (5.3)

Finally, the backward µt−, centered µt· and forward µt+ averaging operators are also introduced
as

µt− ≡
1
2
(1+ et−), µt· ≡

1
2
(et++ et−), µt+ ≡

1
2
(et++1). (5.4)

40 Chapter 5. Time integration schemes

5.2 Energy conserving scheme
This section presents a en energy conserving scheme. This finite difference approach was first
developed in [3] to fully solve the von Kármán equations and later applied to the modal approach
for perfect and imperfect plates in [12]. Departing from eq. (2.11), it is built as

δttqs(n)+ω
2
s qs(n) = ε

NΦ

∑
k

NΨ

∑
l

Es
kl (qk(n)+ak)µt·ηl−2csωsδt·qs(n)+ ps(n) (5.5a)

µt−ηl(n) =−
1

2ζ 4
l

NΦ

∑
i, j=1

H l
i, j (qi(n)et−q j(n)+2a jµt−qi(n)) (5.5b)

where the definition of ε depends on the shape of the plate. For circular plates, the involved
variables are dimensionless and

εc = 12(1−ν
2), (5.6)

with ν standing for the Poisson ratio.
For rectangular plates, the variables in eq. (5.5) are dimensioned and

εr =−
ES2

w

ρ
, (5.7)

where E is the Young modulus, ρ the volumetric mass density and SW is the constant of normaliza-
tion of the transverse vectors.

Replacing the operators by their definitions, the equations to solve for every mode s at every
time step n,

(
1
k2 +

Css

2k

)
qs(n+1)+ ε

NΦ

∑
i, j,k

NΨ

∑
l

Es
klH

l
i, j

2ζ 4
l

qi(n+1)(q j(n)+a j)(qk(n)+ak) =

− ε

NΦ

∑
i, j,k

NΨ

∑
l

Es
klH

l
i, j

2ζ 4
l

qi(n)a j (qk(n)+ak)+

(
2
k2 −Kss

)
qs(n)+

(
Css

2k
− 1

k2

)
qs(n−1)+ ε

NΦ

∑
i, j,k

NΨ

∑
l

Es
kl (qk(n)+ak)

(
ηl(n−1)−ηl(n)

2

)
+ ps(n) (5.8)

ηl(n+1) =−ηl(n)−
NΦ

∑
i, j

H l
i j

ζ 4
l
[qi(n+1)q j(n)+a j (q(n+1)+q(n))] (5.9)

where

Css = 2csωs, (5.10)

and

Kss = ω
2
s . (5.11)

5.3 Störmer-Verlet scheme 41

Note that this is an implicit scheme and every iteration requires a matrix inversion to update the
value of the state vector qqq(t). Although this may increase the computational cost with respect to
the next method, the fact that this scheme is energy conserving provides higher accuracy.

R This scheme proves to be energy conservative and stable as long as

fs ≥ π fNΦ
. (5.12)

Where fs = 1/k is the sampling rate and fNΦ
is the largest eigenfrequency retained in the

truncation for transverse motions [10].

5.3 Störmer-Verlet scheme
The use of the Störmer-Verlet scheme appears as a less time consuming alternative to solve the von
Kármán equations [3, 9, 12].

Using the definitions of ε in eqs. (5.6) and (5.7), it is built over eq. (2.13) as(
1
k2 +

Css

2k

)
qs(n+1) =

(
2
k2 −Kss

)
qs(n)+

(
Css

2k
− 1

k2

)
qs(n−1)

− ε
′
NΦ

∑
i, j,k

NΨ

∑
l

Es
klH

l
i, j

2ζ 4
l

(qk(n)+ak)qi(n)(q j(n)+2a j)+ ps(n). (5.13)

The same stability condition defined in eq. (5.12) holds for this integration scheme. In this
case, the expression is explicit which in terms of computational cost and memory usage is more
advantageous.

III

6 Matlab code . 45
6.1 Installation and general description
6.2 How to use the program
6.3 Linear characteristics functions
6.4 Nonlinear characteristics functions
6.5 Imperfection functions
6.6 Excitation and damping functions
6.7 Time integration functions
6.8 Ouput plot functions
6.9 Parsers
6.10 Input file contents

7 C++ code . 97

User’s manual

6. Matlab code

6.1 Installation and general description

In order to use the Matlab version of the code, "VK-Gong" folder and its subfolders should be
added to the Matlab search path. In addition, for simplicity, the Current folder should be changed
to "VK-Gong". To that end, user shall use the following command lines,

addpath(genpath(’<VK-Gong Path>/VK-Gong’));
cd(’<VK-Gong Path>/VK-Gong’);

"VK-Gong" is divided in two directories, one for the code and the other for the parameters. In
its turn, the code is structured in seven groups, classifying the functions according to their use,
Linear characteristics functions contains the functions related to the computation of eigenmodes

and eigenfrequencies of the perfect plate, in both transverse and in-plane directions. It also
includes a function to display the transverse eigenfrequencies of any plate, either perfect or
imperfect.

Nonlinear characteristics functions includes the routines that compute the HHH and ΓΓΓ modal cou-
pling coefficients.

Imperfection functions contains the functions devoted to compute the imperfection profile and
the projection coefficients used in the time integration process.

Excitation and damping function includes the functions that generate the damping and excitation
vectors.

Time integration functions contains the functions related to the time simulation.
Parsers contains the functions that load and read the input parameter files and create all the

variables necessary for the time simulation.
Output plot functions includes the functions used to display the simulation results such as the

displacement time signal, with the corresponding fast Fourier transform or spectrogram.

On the other hand, the parameters folder contains the preset variables and also stores the newly
computed ones.
H files Containing the H and Γ coefficients for every combination of parameters.

46 Chapter 6. Matlab code

Mode files Containing the transverse and in-plane mode files as explained below.
Input files Containing the files with the input parameters for the simulation.

Note that each of the previous folders organize their contents in three subdirectories: Circular,
Rectangular and Common, in order to distinguish the applicability of every function or file.

6.2 How to use the program

The final purpose of this software is the time simulation of the nonlinear response of thin plates.
To that end, the code should be executed in two phases. First, the calculation of all the necessary
parameters and second, the time integration itself. The main scripts provided with the code follow
this process and give a black box alternative where only the proper introduction of the input
parameters is required.

The program execution is performed using the appropriate main file, "mainCircular.m" for
circular plates or "mainRectangular.m" for rectangular. This script is headed by the input parameter
file names and should be modified by user if necessary. When the specified files are not found, the
preset values will be loaded. The contents of these files are described in Section 6.10.

1 %% I n p u t p a r a m e t e r s f i l e s
2 P l a t e C h a r a c t e r i s t i c s F i l e N a m e = ’ P l a t e C h a r a c t e r i s t i c s . mat ’ ; %

P h y s i c a l c h a r a c t e r i s t i c s o f t h e p l a t e : Dimensions ,
i m p e r f e c t i o n p r o f i l e , m a t e r i a l and boundary c o n d i t i o n s .

3 S i m u l a t i o n P a r a m e t e r s F i l e N a m e = ’ S i m u l a t i o n P a r a m e t e r s . mat ’ ; %
P a r a m e t e r s r e l a t e d t o t h e s i m u l a t i o n : Time l e n g t h , scheme ,
number o f modes , o u t p u t p o i n t s , a c c u r a c y .

4 GammaFileName = ’ GammaCircular . mat ’ ; % Name of t h e f i l e
c o n t a i n i n g t h e Gamma Tensor .

5 ScoreFi leName = ’ S c o r e P a r a m e t e r s . mat ’ ; % C h a r a c t e r i s t i c s o f t h e
e x c i t a t i o n .

6 OutputFi leName = ’ R e s u l t s ’ ; % Name of t h e r e s u l t s f i l e s and
f o l d e r .

7 . . .

Next, the script calls the parser functions plate_def and score in charge of reading the input
files and preparing the variables for the time simulation which is performed in the following step.
Finally, results are saved as audio and / or binary files.

Nevertheless, if the user is interested in the intermediate results such as the plate eigenfrequen-
cies or nonlinear coupling coefficients, the preliminary functions can be executed independently as
described in the following sections.

6.3 Linear characteristics functions

6.3.1 Circular
ComputeTransverseEigenfrequenciesCircular.m

This function is used to obtain the eigenfrequencies of the transverse vibration modes of a perfect
plate. Depending on the boundary conditions of the problem, a different eigenproblem is consid-
ered. When BC = 'clamped', the function solves eq. (3.32). For BC = {'free','elastic'},
eq. (3.50) is used, setting KR = 0 and KT = 0 for the free case.

6.3 Linear characteristics functions 47

The routine calculates the roots ξi of the aforementioned equations up to the value introduced
in xmax. The precision of the solutions is tuned by means of the subinterval size dx. Note that
these variables must be introduced in dimensionless form. Typically, dx = 1e-3 provides enough
accuracy for the later performance of the code. On the other hand, xmax should be set large enough
to obtain the desired number of eigenfrequencies. As a reference, when dx = 1e-3, xmax = 100

and BC = 'free', 2579 frequencies are obtained.

In order to find the zeros, function FindZeros.m is used. Given a function f evaluated at every
value of x, it finds the values of x where f is null.

Results are shown in two output variables. Matrix Zeros contains the values of ξi sorted in
ascending order so that every row corresponds to the number of nodal diameters k and every column
to a number of nodal circles ni. Note that in case of clamped edge the minimum number of nodal
circles is 1 so n ≥ 1; whereas in case of free or elastic edge, n ≥ 0. This matrix is no longer
necessary in the code but might be used for checking the function results.

In vector mode_t, modes are listed in ascending order according to its eigenfrequency. Every
row contains the index i of the mode, the position of the root ξi, the number of nodal diameters ki,
the number of nodal circles ni, the configuration of the mode, ci = 1 for cos and ci = 2 for sin, and
finally, the eigenfrequency ωi = ξ 2

i . mode_t is built by SortZeros.m and saved in a binary file in
The output is saved and located in ’./Parameters/Mode files/Circular/’.

Function 6.3.1 — ComputeTransverseEigenfrequenciesCircular.m.
Short description

Computation of transverse eigenvalues and dimensionless eigenfrequencies.
Call

[mode_t, Zeros] = ComputeTransverseEigenfrequenciesCircular(dx, xmax, BC, nu, KR,
KT)

Input parameters
dx Accuracy step.
xmax Top boundary value for x.
BC Type of boundary conditions at the edge. Possible values: ’free’, ’clamped’, ’elastic’.
nu Poisson ratio.
KR Rotational stiffness normalized with respect to bending stiffness, KR = Kr/D. Only used

when BC = ’elastic’.
KT transverse stiffness normalized with respect to bending stiffness, KT = Kt/D.. Only used

when BC = ’elastic’.

Output parameters
mode_t Vector containing the information corresponding to the transverse vibration modes

with eigenfrequencies up to xmax. For every mode,

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

< i > < ξi > < ki > < ni > < ci > < ωi >

Zeros Matrix containing the zeros found up to xmax, i.e. ξi, sorted in ascending order. Every
row corresponding to a value of k and every column to a value of n.

48 Chapter 6. Matlab code

Function 6.3.2 — FindZeros.m.
Short description

Localization of roots of a given function.
Call

[zer] = FindZeros(x, f)

Input parameters
x Vector of abscissa points.
f Function to be evaluated

Output parameters
zer Vector containing the values of x where f is null

Function 6.3.3 — SortZeros.m.
Short description

Building of vector TAB containing the sorted list of eigenfrequencies with their correspond-
ing number of nodal diameters and circles.
Call

[TAB] = SortZeros(Zeros)

Input parameters
Zeros Matrix containing zeros of a certain function, sorted in ascending order. Every row

corresponds to a value of k and every column to a value of n.

Output parameters
TAB Table that contains the values of matrix Zeros sorted in ascending order with the following

additional information,

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6
< i > < xi > < ki > < ni > < ci > < x2

i >

ComputeInplaneEigenfrequenciesCircular.m
This function is analogue to ComputeTransverseEigenfrequenciesCircular.m for the in-plane modes
of vibration of a perfect plate. In this case, eq. (3.28) is considered for BC = {’free’,’elastic’} and
eq. (3.41) for BC = {’clamped’}. The recommended input values are the same than for the previous
function, so dx = 1e-3 and xmax = 100 will provide enough results for typical computations.

Function 6.3.4 — ComputeInplaneEigenfrequenciesCircular.m.
Short description

Computation of in-plane eigenvalues and dimensionless eigenfrequencies.
Call

[mode_l, Zeros] = ComputeInplaneEigenfrequenciesCircular(dx, xmax, BC, nu)

Input parameters
dx Discretization step.

6.3 Linear characteristics functions 49

xmax Top boundary value for x.
BC Type of boundary conditions at the edge. Possible values: ’free’, ’clamped’, ’elastic’.
nu Poisson ratio.

Output parameters
mode_l Vector containing the information corresponding to the longitudinal vibration modes

with eigenfrequencies up to xmax. For every mode,

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6
< i > < ζi > < ki > < ni > < ci > < ωi >

Zeros Matrix containing the zeros found up to xmax sorted in ascending order. Every row
corresponds to a value of k and every column to a value of n.

ModeShapeCircular.m
This function is used to compute the shape of a single transverse vibration mode as a 3D surface. In
this way, for every pair of coordinates [U, V] the value of W is calculated.

It is used by the main code to compute the projection coefficients between the imperfection and
the transverse modal basis. However, it may also be used independently to plot the modeshape of a
given mode by means of the Matlab function surf(U, V, W).

Input variables k, c and xkn can be obtained by executing ComputeTransverseEigenfre-

quenciesCircular.m and retrieving the contents of mode_t.
Next variables, radius R and Poisson ratio nu depend on the plate characteristics. Note that if

xkn is introduced in dimensionless form, R should be set to unity. On the other hand, KR corresponds
to the normalized rotational stiffness of the edge. In case that the boundary conditions do not
correspond to elastic edge, KR should be set to 0 or infinity as explained in the table below.

Finally, kmax and nmax specify the output resolution, i.e. the number of points in every
direction. Note that kmax�k and nmax� n to guarantee that all the variations in the profile are
displayed. The final value depends on the user needs, however values around kmax = nmax =

500 are recommended to guarantee accurate results.
Figure 6.1 shows the mode shape of the 98-th transverse mode of a perfect plate with free edge

and Poisson ratio ν = 0.38. It is calculated by executing: [U,V,W] = ModeShapeCircular(4,

1, 18.4232, 1, 0.38, 0, 500, 500);.

Figure 6.1: Transverse mode shape obtained when k=4, c=1, xkn=18.4232, R=1, nu=0.38, KR=0,
kmax=500 and nmax=500.

50 Chapter 6. Matlab code

Function 6.3.5 — ModeShapeCircular.m.
Short description

Computation of the mode shape as a 3D surface.
Call

[U, V, W] = ModeShapeCircular(k, c, xkn, R, nu, KR, kmax, nmax)

Input parameters
k Number of nodal diameters.
c Configuration of the mode cos/sin.
xkn Eigenvalue of the mode.
R Radius of the plate.
nu Poisson ratio.
KR Normalized rotational stiffness. Also used to declare the boundary conditions. Set KR = 0

for free boundary and KR = ∞ for clamped boundary.
kmax Number of discretization points in θ dimension.
nmax Number of discretization points in r dimension.
Output parameters
U Matrix of x components of the points in the mode shape surface. (Cartesian coordinates)
V Matrix of y components of the points in the mode shape surface. (Cartesian coordinates)
W Values of the mode shape surface in points [U,V].

norm_modes.m

This function is used to calculate the norm of a 2D eigenvector. This value is used in further
computations of the code to normalize the eigenvectors. For this reason, the returned variable
corresponds to the inverse of the norm, i.e. Kkn = ‖Φ‖−1

Function 6.3.6 — norm_modes.m.
Short description

Function used to compute the inverse norm of a 2D vector.
Call

[Kkn] = norm_modes(k_t,xkn,R,dr, nu, KR, BC)

Input parameters
k_t Number of nodal diameters.
xkn Square root of the angular frequency ξs =

√
ωs.

R Plate radius.
dr Discretization step.
nu Poisson ratio
KR Rotational stiffness normalized with respect to bending stiffness, KR = Kr/D. Only used

when BC = ’elastic’.
BC Type of boundary conditions at the edge. Possible values: ’free’, ’clamped’, ’elastic’.

Output parameters
Kkn Inverse of the vector norm.

6.3 Linear characteristics functions 51

DisplayEigenfrequenciesCircular.m

This is an utility function used to independently compute and display the eigenfrequencies of a
given plate. This means that this function is not called by the main code but provides a fast way to
obtain the plate transverse eigenfrequencies without having to execute the main script.

However, it should be executed once the mode_t.mat file that corresponds to the plate charac-
teristics has been created by ComputeTransverseEigenfrequenciesCircular.m. Remember that in
most of the cases, thanks to the variable nondimensioning, the file will already exist from previous
simulations.

The input parameters of the function correspond to those in the main script, i.e. the names
of the files containing the plate characteristics and the simulation parameters. Their contents are
described in Section 6.10. Again, if the file indicated in GammaFileName does not exist, it will be
created during the execution.

The function returns three vectors, being om_dim the angular eigenfrequencies in rad/s, f_dim
the eigenfrequencies in Hz and om_ndim the angular eigenfrequencies in dimensionless form.

Note that if the plate is perfect, i.e. H = 0, the values in om_dim correspond to those in the last
column of mode_t.

If the plate is imperfect, the eigenfrequencies will be calculated combining the projection
coefficients Ai and the nonlinear coupling coefficients ΓΓΓ, as explained in Section 2.4.

Function 6.3.7 — DisplayEigenfrequenciesCircular.m.
Short description

Function used to compute the eigenfrequencies of a perfect or imperfect circular plate.
Call

[om_dim, f_dim, om_ndim] = DisplayEigenfrequenciesCircular(PlateCharacteristicsFile-
Name, SimulationParametersFileName, GammaFileName)

Preconditions
ComputeTransverseEigenfrequenciesCircular.m has already been executed or the corre-

sponding mode_t_XXXX.mat file exists.

Input parameters
PlateCharacteristicsFileName Name of the file containing the plate characteristics parame-

ters.
SimulationParametersFileName Name of the file containing the simulation parameters.
GammaFileName Name of the file containing the ΓΓΓ tensor, G. If the file does not exist, the

function will create it using this name.

Output parameters
om_dim Sorted vector containing the angular eigenfrequencies in rad/s.
f_dim Sorted vector containing the eigenfrequencies in Hz.
om_ndim Sorted vector containing the dimensionless angular eigenfrequencies.

6.3.2 Rectangular
ComputeTransverseEigenfrequenciesRectangular.m

This function is used to calculate the transverse eigenfrequencies of a perfect rectangular plate.
Given the plate dimensions Lx and Ly in meters and the boundary conditions BC, the function
computes the first Nphi angular eigenfrequencies and creates the mode_t matrix as described below.
The output is saved and located in ’./Parameters/Mode files/Rectangular/.

52 Chapter 6. Matlab code

The first column of mode_t corresponds to the mode index, the second and third columns to

the integers kx and ky, and the forth column corresponds to
[(

kxπ

Lx

)2
+
(

kyπ

Ly

)2
]

.

Note that this expression does not depend on the material characteristics, in order to obtain the
real angular eigenfrequencies, the values in mode_t(:,4) should be multiplied by

√
D

ρhd , where D
is the bending stiffness, ρ the mass density and hd the plate thickness.

The reason for omitting this term in mode_t is that in this way, the file can be reused for all the
plates with the same size. Once the file is created, the user shall use DisplayEigenfrequenciesRect-
angular.m to obtain the eigenfrequencies in the proper unities.

Function 6.3.8 — ComputeTransverseEigenfrequenciesRectangular.m.
Short description

Computation of transverse eigenfrequencies.
Call

[mode_t] = ComputeTransverseEigenfrequenciesRectangular(BC, Lx, Ly, Nphi)

Input parameters
BC Type of boundary conditions at the edge. Possible values: ’SimplySupported’.
Lx Plate dimension X in meters.
Ly Plate dimension Y in meters.
Nphi Number of transverse modes and number of eigenfrequencies that will be computed.

Output parameters
mode_t Vector containing the information corresponding to the first Nphi transverse vibration

modes. For every mode,

Column 1 Column 2 Column 3 Column 4

< i > < kx > < ky > < ωi >

ModeShapeRectangular.m
This function computes the shape of a transverse mode as a 3D surface. For every pair of coordinates
[X, Y] the value of phi is calculated.

It is used by the main code to compute the projection coefficients between the imperfection and
the transverse modal basis. However, it may also be used independently to plot the mode shape of a
given mode by means of the Matlab function surf(X, Y, phi).

The function requires the introduction of the boundary conditions BC, the mode coefficients kx
and ky, the plate dimensions Lx and Ly and the number of discretization points in every direction
Nx and Ny. Note that the number of nodal lines in the mode shape will be kx + 1 and ky + 1.

The values of Nx and Ny should be set to ensure that all the variations in the imperfection profile
are displayed. The final value depends on the user needs, however values around Nx = Ny = 500

are recommended to guarantee accurate results.
Figure 6.2 shows the mode shape of a mode of a simply supported plate, with kx=5, ky=3,

Lx=0.3, Ly=0.5 and Nx = Ny = 500. It is calculated by executing: [X,Y,phi] = ModeShape-

Rectangular('SimplySupported', 5, 3, 0.3, 0.5, 500, 500);.

Function 6.3.9 — ModeShapeRectangular.m.

6.4 Nonlinear characteristics functions 53

Figure 6.2: Transverse mode shape obtained when BC='SimplySupported', kx=5, ky=3, Lx=0.3,
Ly=0.5, Nx = 500 and Ny = 500.

Short description
Computation of the mode shape as a 3D surface.

Call
[X, Y, phi] = ModeShapeRectangular(BC, kx, ky, Lx, Ly, Nx, Ny)

Input parameters
BC Boundary conditions. Possible values: ’SimplySupported’.
kx Mode coefficient in direction x. The number of nodal lines in this direction will be kx + 1.
kx Mode coefficient in direction y. The number of nodal lines in this direction will be ky + 1.
Lx Plate dimension X in meters.
Ly Plate dimension Y in meters.
Nx Number of discretization points in x dimension.
Ny Number of discretization points in y dimension.
Output parameters
X Matrix of x components of the points in the mode shape surface.
Y Matrix of y components of the points in the mode shape surface.
phi Values of the mode shape surface in points [X ,Y].

6.4 Nonlinear characteristics functions
6.4.1 Circular

H_tensorCircular.m
This function builds the matrices that contain the coupling coefficients H i

pq. It is only called by the
main script when there is not an H file with the characteristics required by the simulation, i.e. with
the same boundary conditions and parameters and enough number of considered modes. Given that
it implies a long computational time, it is recommended to call it independently prior to the time
simulation.

The function requires the number of modes included in the simulation, Nphi and Npsi, the
boundary conditions BC and the Poisson ratio nu.

The rotational KR and transverse KT normalized stiffnesses are only used if the boundary
conditions are set to 'elastic'.

The last parameter, dr_H is used to tune the precision of the computations and corresponds to
the discretization interval. It is recommended to set it around dr_H = 1e-4.

54 Chapter 6. Matlab code

Function 6.4.1 — H_tensorCircular.m.
Short description

Computation of H matrices.
Call

[H0, H1, H2] = H_tensorCircular(Nphi, Npsi, BC, nu, KR, KT, dr_H)

Input parameters
Nphi Number of transverse modes included in the truncation.
Npsi Number of in-plane modes included in the truncation.
BC Type of boundary conditions at the edge. Possible values: ’free’, ’clamped’, ’elastic’.
nu Poisson ratio.
KR Rotational stiffness normalized with respect to bending stiffness, KR = Kr/D. Only used

when BC = ’elastic’.
KT transverse stiffness normalized with respect to bending stiffness, KT = Kt/D. Only used

when BC = ’elastic’.
dr_H Discretization step for the computation of H.

Output parameters
H0 Matrix of size N psi×N phi×N phi containing the H coupling coefficient tensor, H(i, p,q)=

H i
pq.

H1 Matrix that contains matrix H0 divided by the eigenfrequency of the corresponding in-plane
mode, i.e. H1(i, p,q) = H i

pq/ωi = H i
pq/ζ 2

i .
H2 Matrix that contains matrix H0 divided by the squared eigenfrequency of the corresponding

in-plane mode, i.e. H2(i, p,q) = H i
pq/ω2

i = H i
pq/ζ 4

i .

For every combination of indexes, i, p, q, H_tensorCircular.m calls function HcoefficientCircu-
lar.m to compute a single value of H i

pq according to eq. (2.11b).

The surface integral in eq. (2.11b) can be separated in two terms, one depending on the radius r
and the other, on the angle θ . For certain combinations of modes, the H coefficient is directly null
and does not need to be computed. This will depend on the number of nodal diameters kp, kq
and ki and the mode configurations cp, cq and ci, as detailed in Table 6.1. On the other cases,
functions CosCosCosIntegration.m and CosSinSinIntegration.m are used.

cp cq ci

ki 6= {kp + kq, |kp− kq|} - - -

ki = {kp + kq, |kp− kq|}

cos cos sin
sin sin sin
sin cos cos
cos sin cos

Table 6.1: Cases where the combination of ki, kp and kq makes the nonlinear coupling coefficient
be null, i.e. H i

pq = 0

The value computed by HcoefficientCircular.m is placed in H matrix, so that H0(i, p,q) = H i
pq.

To reduce the computational cost of other functions in the code, H_tensorCircular.m also creates
matrices H1 and H2, such that H1(i, p,q) = H i

pq/ζ 2
i and H2(i, p,q) = H i

pq/ζ 4
i .

6.4 Nonlinear characteristics functions 55

Function 6.4.2 — HcoefficientCircular.m.
Short description

Computation of a single H coefficient.
Call

[H] = HcoefficientCircular(kp, kq, cp, cq, xip, xiq, ki, ci, zeta, nu, KR, dr_H)

Input parameters
kp Number of nodal diameters of mode p, i.e. kp.
kq Number of nodal diameters of mode q, i.e. kq.
cp Configuration of mode p, i.e. cp.
cq Configuration of mode q, i.e. cq.
xip Eigenvalue of mode p, i.e. ξp.
xiq Eigenvalue of mode q, i.e. ξq.
ki Number of nodal diameters of mode i, i.e. ki.
ci Configuration of mode i, i.e. ci.
zeta Eigenvalue of mode i, i.e. ζi.

nu Poisson ratio.
KR Normalized rotational stiffness. Force for free edge boundary conditions, KR = 0, for

clamped edge boundary conditions KT = ∞.
dr_H Discretization step.
Output parameters
H Coupling coefficient between in-plane mode i and transverse modes p, and q, i.e. H i

pq.

Function 6.4.3 — CosCosCosIntegration.m.
Short description

Analytical computation of
∫ 2π

0 cos(kθ)cos(lθ)cos(mθ)dθ

Call
[S] = CosCosCosIntegration(k, l, m)

Input parameters
k Coefficient of the first cos(kθ). It can be a single value or a matrix.
l Coefficient of the first cos(lθ). It can be a single value or a matrix.
m Coefficient of the first cos(mθ). It can be a single value or a matrix.
Output parameters
S Result of the integral. The size of S is equal to the size of {k, l,m}.

Function 6.4.4 — CosSinSinIntegration.m.
Short description

Analytical computation of
∫ 2π

0 cos(kθ)sin(lθ)sin(mθ)dθ

Call
[S] = CosSinSinIntegration(k, l, m)

Input parameters

56 Chapter 6. Matlab code

k Coefficient of the first cos(kθ). It can be a single value or a matrix.
l Coefficient of the first sin(lθ). It can be a single value or a matrix.
m Coefficient of the first sin(mθ). It can be a single value or a matrix.
Output parameters
S Result of the integral. The size of S is equal to the size of {k, l,m}.

6.4.2 Rectangular
H_TensorRectangular.m
This function is used to compute the HHH tensor of the rectangular plate as defined in section 2.3.1.

The integrals in eq. (2.11b) can be decomposed by separating the terms that depend on the
in-plane or the transverse modes. Specific functions have been implemented for every group of
terms.

AiryStressFactorsCalculation.m, described below, contains the computations related to the
in-plane direction. The outputs of this function coeff0, coeff1, coeff2 are required as inputs
of H_TensorRectangular.m and thus, this function should be executed before.

The transverse eigenfrequencies must be also computed in advance if the mode_t vector has
not been created yet. For that, execute ComputeTransverseEigenfrequenciesRectangular.m.

The rest of the input parameters correspond to the plate and simulation characteristics. They
are the number of transverse Nphi and in-plane Npsi modes, the plate dimensions Lx and Ly and
the boundary conditions BC.

Function 6.4.5 — H_tensorRectangular.m.
Short description

Computation of H matrices.
Call

[H0, H1, H2] = H_tensorRectangular(coeff0, coeff1, coeff2, Nphi, Npsi, Lx, Ly, mode_t,
BC)

Preconditions
Execute ComputeTransverseEigenfrequenciesRectangular.m to obtain mode_t and AiryS-

tressFactorsCalculation.m for coeff0, coeff1, coeff2.
Input parameters
coeff0 Coefficient containing the terms relative to the in-plane mode for the computation of the

H coefficient.
coeff1 Vector containing coeff0 divided by the angular frequency of the in-plane mode,

coe f f 1(:, i) = coe f f 0(:, i)/ωi.
coeff2 Vector containing coeff0 divided by the squared angular frequency of the in-plane mode,

coe f f 2(:, i) = coe f f 0(:, i)/ω2
i .

Nphi Number of transverse modes included in the truncation.
Npsi Number of in-plane modes included in the truncation.
Lx Plate dimension X in meters.
Ly Plate dimension Y in meters.
mode_t Vector containing the information corresponding to the first Nphi transverse vibration

modes. For every mode,

6.4 Nonlinear characteristics functions 57

Column 1 Column 2 Column 3 Column 4

< i > < kx > < ky > < ωi >

BC Type of boundary conditions at the edge. Possible values: ’SimplySupported’.

Output parameters
H0 Matrix of size N psi×N phi×N phi containing the H coupling coefficient tensor, H(i, p,q)=

H i
pq.

H1 Matrix that contains matrix H0 divided by the eigenfrequency of the corresponding in-plane
mode, i.e. H1(i, p,q) = H i

pq/ωi = H i
pq/ωi.

H2 Matrix that contains matrix H0 divided by the squared eigenfrequency of the corresponding
in-plane mode, i.e. H2(i, p,q) = H i

pq/ω2
i .

Function 6.4.6 — Auxiliary functions: gi.m, i = { 1, 2, 3, 4, 5, 6}.
Short description

Integration terms for the computation of H coefficients.
Call

[m] = g1(Npsi, Nphi, S, Lx, mode_t)
[m] = g2(Npsi, Nphi, S, Lx, mode_t)
[m] = g3(Npsi, Nphi, S, Ly, mode_t)
[m] = g4(Npsi, Nphi, S, Ly, mode_t)
[m] = g5(Npsi, Nphi, S, Lx, mode_t)
[m] = g6(Npsi, Nphi, S, Ly, mode_t)

Input parameters
Nphi Number of transverse modes included in the truncation.
Npsi Number of in-plane modes included in the truncation.
S Number of computed in-plane eigenvalues.
Lx Plate dimension X in meters.
Ly Plate dimension Y in meters.
mode_t Vector containing the information corresponding to the first Nphi transverse vibration

modes. For every mode,

Column 1 Column 2 Column 3 Column 4

< i > < kx > < ky > < ωi >

Output parameters
m Solution of the integral.

Function 6.4.7 — Auxiliary functions: ik_mat.m, k = { 1, 2, 3, 4, 5, 9, 10, 11, 12, 13}.
Short description

Auxiliary functions used by gi.m.
Call

[s] = ik_mat(Npsi, Nphi, L)

58 Chapter 6. Matlab code

Input parameters
Nphi Number of transverse modes included in the truncation.
Npsi Number of in-plane modes included in the truncation.
L Plate dimension in meters.

Output parameters
s Solution of calculation.

AiryStressFactorsCalculation.m
This function solves the eigenproblem explained in ??.

The input values are the boundary conditions BC, the number of in-plane modes that will be
considered in the simulation Npsi and the plate dimensions Lx and Ly.

The output values coeff0, coeff1, coeff2 will be used for the computation of the nonlinear
tensor HHH and correspond to the terms of the integral in eq. (2.11b) that depend on the in-plane
modes.

In order to solve the eigenproblem, the function calls the subroutines int1.mat-int4.mat which
solve the integrals eqs. (4.11) to (4.13) respectively. They are described below for the sake of
completeness.

Function 6.4.8 — AiryStressFactorsCalculation.m.
Short description

Solves the eigenproblem associated to the Airy stress function for the in-plane direction and
returns the factors necessary for the computation of the H coupling coefficients.
Call

[coeff0, coeff1, coeff2] = AiryStressFactorsCalculation(BC, Npsi, Lx, Ly)

Input parameters
BC Type of boundary conditions at the edge. Possible values: ’SimplySupported’.
Npsi Number of in-plane modes in the model.
Lx Plate dimension X in meters.
Ly Plate dimension Y in meters.

Output parameters
coeff0 Coefficient containing the terms relative to the in-plane mode for the computation of the

H coefficient.
coeff1 Vector containing coeff0 divided by the angular frequency of the in-plane mode,

coe f f 1(:, i) = coe f f 0(:, i)/ωi.
coeff2 Vector containing coeff0 divided by the squared angular frequency of the in-plane mode,

coe f f 2(:, i) = coe f f 0(:, i)/ω2
i .

Function 6.4.9 — int1.m .
Short description

Function that solves integral eq. (4.10) for the Airy stress eigenproblem.
Call

[y] = int1(m, p, L)

6.4 Nonlinear characteristics functions 59

Input parameters
m Index of the first function.
p Index of the second function.
L Plate dimension in meters.

Output parameters
y Solution of the integral.

Function 6.4.10 — int2.m .
Short description

Function that solves integral eq. (4.11) for the Airy stress eigenproblem.
Call

[y] = int2(m, p, L)

Input parameters
m Index of the first function.
p Index of the second function.
L Plate dimension in meters.

Output parameters
y Solution of the integral.

Function 6.4.11 — int4.m .
Short description

Function that solves integral eq. (4.12) for the Airy stress eigenproblem.
Call

[y] = int4(m, p, L)

Input parameters
m Index of the first function.
p Index of the second function.
L Plate dimension in meters.

Output parameters
y Solution of the integral.

Function 6.4.12 — int2_mat.m .
Short description

Function that solves integral eq. (4.11) and returns a matrix used to compute the norm of the
eigenvectors.
Call

[y] = int2_mat(N, L)

60 Chapter 6. Matlab code

Input parameters
N Number of functions to consider and size of the output matrix.
L Plate dimension in meters.

Output parameters
y Solution of the integral. Squared matrix of size N×N.

6.4.3 Common
GammaTensor.m

This function computes the 4-th order tensor Γ
p
qrs using the matrix H1 and saves it in a file specified

by filename. The Gamma file is used to compute the eigenfrequencies of the imperfect plate. Like
H_tensorCircular.m, GammaTensor.m is only called if there is not an existing file with the required
characteristics for the simulation.

The matrix H1 is obtained after executing H_tensorCircular.m or H_TensorRectangular, de-
pending on the plate shape, or by loading it from the H file if it already exists. The values of Nphi
and Npsi should be set equal or less than the size of H1. Note that, size(H1) = [Npsi, Nphi,

Nphi].
This function requires a large amount of memory since it works with a variable of size Nphi4.

The user is advised to set Nphi<100. The value of Npsi is generally inferior, so it should not be
restricted by memory limitations. However, it is been proved that the values of Gamma converge
when NΨ ≈ 50 [10]. Set, Npsi∈(50,100).

Function 6.4.13 — GammaTensor.m.
Short description

Computation of Γ tensor using H matrices.
Call

[G] = GammaTensor(H1, filename, Nphi, Npsi)

Input parameters
H1 H coefficients matrix divided by the eigenfrequency of the corresponding in-plane mode,

i.e. H1(i, p,q) = H i
pq/ωi = H i

pq/ζ 2
i .

filename Name of the output file.
Nphi Number of transverse modes to be included. The size of H1 must include at least Nphi

transverse modes.
Npsi Number of in-plane modes to be included. The size of H1 must include at least Npsi

in-plane modes.

Output parameters
G Matrix of size N phi×N phi×N phi×N phi containing the ΓΓΓ coupling coefficient tensor,

G(p,q,r,s) = Γ
p
qrs.

6.5 Imperfection functions

The current model can not only deal with perfect plates but also with those that present imperfections
in their profile. The way to introduce them in the time integration calculation is by expressing the
imperfection shape as a series expansion of the modes in the transverse modal basis multiplied by
the projection coefficients as written in eq. (2.14).

6.5 Imperfection functions 61

The code offers the choice of introducing manually the projection coefficients along to the
respective mode indexes or choosing one of the preset shapes and compute automatically the
necessary values. When the second option is selected, the following functions are used.

6.5.1 Circular
ProjectionOfTheImperfectionCircular.m
When the modeled plate is imperfect, i.e. when H>0 and the projection coefficients are not
introduced, this function calculates the imperfection profile, builds the 3D surface and computes the
projection coefficients that will be used by the time stepping function to expand w0 as in eq. (2.14).

To that end, the function calls successively AxisymmetricCap.m and ComputationOfTheProjec-
tionCoefficientsCircular.m. The input and output parameters are described below.

Function 6.5.1 — ProjectionOfTheImperfectionCircular.m.
Short description

Computation of the imperfection profile and calculation of the projection coefficients from
the transverse modal basis of the perfect plate.
Call

[U, V, Imperfection, proj, modeIndices, Approximation, Rc] = ProjectionOfTheImper-
fectionCircular(H, hd,Rd, ImperfectionType, tau2, Nr, Nth, nu, KR, error_coef, ModeType,
mode_t)

Input parameters
H Height of the imperfection.
hd Thickness of the plate.
Rd Radius of the plate in meters.
ImperfectionType Shape of the imperfection profile. Possible values: ’Spherical’, ’Parabolic’.
tau2 When ImperfectionType = ’Parabolic’, tau2 is the parabola order. tau2 ∈

(
−10250,10250

)
Nr Number of discretization points for the radius variable r.
Nth Number of discretization points for the angle variable θ .
nu Poisson ratio.
KR Rotational stiffness normalized with respect to bending stiffness, KR = Kr/D. Only used

when BC = ’elastic’.
error_coef Top error admitted in the approximation of the imperfection. error_coe f ∈ [0,1]
ModeType Type of modes considered in the approximation of the imperfection. Possible

values: ’All’, ’Axisymmetric’.
mode_t Vector containing the information corresponding to the transverse vibration modes.

For every mode,

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

< i > < ξi > < ki > < ni > < ci > < ωi >

Output parameters
U Matrix of x components of the points in the Imperfection. (Cartesian coordinates)
V Matrix of y components of the points in the Imperfection. (Cartesian coordinates)
Imperfection Values of the imperfection profile in points [U,V].
proj Vector of projection coefficients.
modeIndices Indices of the modes included in vector proj as sorted in vector mode_t.
Approximation Approximated imperfection profile obtained as a linear combination of the

62 Chapter 6. Matlab code

projection coefficients and the corresponding mode shapes.
Rc Curvature radius of the plate. Only used for spherical profile.

AxisymmetricCap.m
For the construction of the imperfection profile, AxisymmetricCap.m is called. There are two shapes
included: spherical and parabolic, each one configured by different parameters.
• Spherical: Spherical cap shaped imperfection (See fig. 6.3). It is parametrized by

H Height of the imperfection
R Plate radius
The profile is computed using

y(r) =−Rc +
√

R2
c− r2 (6.1)

where the radius of curvature Rc is computed as

Rc =
H2 +R2

2H
. (6.2)

(a)

H

R

(b)

Figure 6.3: Spherical imperfection with Rd=1, H=0.05. This shape has been plot setting Nr=400

and Nth=500.

• Parabolic: The imperfection profile is a paraboloid as the one displayed in fig. 6.4, defined
by

y =−Hrτ2 (6.3)

and parametrized by
H Height of the imperfection
R Plate radius
tau2 Parabola order. Mathematically, τ2 can take any real value but tau2 should be bounded

to ±10250 to avoid under/overflows.
Nr and Nth are the number of discretization of points for variables r and θ respectively. They

should be chosen so that all the variations in the shape can be appreciated. If there are no memory
limitations, the user is advised to set both of them to values larger than 400, e.g. Nr=400 and
Nth=500.

6.5 Imperfection functions 63

(a)

H

R

(b)

Figure 6.4: Parabolic imperfection with R=1, H=0.05, tau2 = 3. This shape has been plot setting
Nr=400 and Nth=500.

Function 6.5.2 — AxisymmetricCap.m.
Short description

Building of the imperfection profile as a 3D surface.
Call

[U, V, Imperfection] = AxisymmetricCap(H, R, ImperfectionType, Nr, Nth, tau2)

Input parameters
H Height of the imperfection.
R Radius of the plate.
ImperfectionType Shape of the imperfection profile. Possible values: ’Spherical’, ’Parabolic’.
tau2 When ImperfectionType = ’Parabolic’, tau2 is the parabola order. tau2 ∈

(
−10250,10250

)
.

(Not used when ImperfectionType =’Spherical’, any value can be introduced.)
Nr Number of discretization points for the radius variable r.
Nth Number of discretization points for the angle variable θ .
Output parameters
U Matrix of x components of the points in the Imperfection. (Cartesian coordinates)
V Matrix of y components of the points in the Imperfection. (Cartesian coordinates)
Imperfection Values of the imperfection profile in points [U,V].

ComputationOfTheProjectionCoefficientsCircular.m

Next ComputationOfTheProjectionCoefficientsCircular.m calculates the projection coefficients to
approximate the shape in Imperfection as stated in eq. (2.15).

Incrementally, the function takes the values of row i in mode_t, computes the shape of that
mode with ModeShapeCircular.m and calculates the scalar product between Imperfection and
the obtained mode shape, using PolarScalarProduct.m. The result of this operation is the projection
coefficient ai which is added to vector proj, whereas the mode index i is added to modeIndices. The
process is repeated until the relative error between the original and the approximated shape is lower
than error_coef or until Nphi modes have been considered.

The function also requires the Poisson ratio nu and the boundary conditions to calculate the
transverse mode shapes. The boundary conditions are introduced by selecting KR accordingly.
When BC='elastic', KR equals the normalized rotational stiffness. On the other cases, KR=0
indicates BC='free' and KR=inf, BC='clamped'.

In order to accelerate the computation process, when an axisymmetric profile must be approxi-
mated, the ModeType can be set to ’Axisymmetric’ so that only this kind of modes are considered

64 Chapter 6. Matlab code

for the calculations.
For instance, we want to approximate the shape in Figure 6.3, for a plate with Poisson ratio

ν = 0.38, thickness hd = 1e− 3 and free edge boundary conditions. The error is bounded to
error_coef=0.01. The rotational stiffness is set to KR=0 to indicate that the boundary conditions
are BC='free'. Given that this is an axisymmetric shape, ModeType='Axisymmetric'. mode_t
is obtained after running ComputeTransverseEigenfrequenciesCircular.m. Only the first Nphi =

1000 rows of mode_t will be passed as argument.
The function is called using: [proj, modeIndices, Approximation, error] = Compu-

tationOfTheProjectionCoefficientsCircular(Imperfection, error_coef, nu,

KR, ModeType, mode_t(1:Nphi,:)); Note that Imperfection must be divided by hd to ob-
tain dimensionless projection coefficients. This is not necessary when using dimensioned magni-
tudes.

The function returns the projection coefficients displayed in Table 6.2 and the approximated
shape shown in Figure 6.5. See that the series expansion only needs 9 terms to approximate the
shape with the desired error. Using these values, the committed error is error=0.005. In contrast,
if the number of considered transverse modes was smaller, for instance Nphi =100, only the first 6
values of proj would have been obtained and the error would have been above error_coef, i.e.
error=0.0994. Therefore, complex profile shapes require a compromise between accuracy and
computational cost.

i modeIndices(i) proj(i)

1 3 2.54e-02
2 14 -2.95e-03
3 29 8.57e-04
4 50 -3.59e-04
5 73 1.84e-04
6 104 -1.07e-04
7 141 6.77e-05
8 178 -4.65e-05
9 225 3.29e-05

Table 6.2: Projection coefficients calculated for the approximation of the spherical imper-
fection in Figure 6.3, when nu=0.38, KR=0, ModeType='Axisymmetric', Nphi=1000 and
error_coef=0.01.

Figure 6.5: Approximation of the spherical imperfection in Figure 6.3, when nu=0.38, KR=0,
ModeType='Axisymmetric', Nphi=1000 and error_coef=0.01.

6.5 Imperfection functions 65

Function 6.5.3 — ComputationOfTheProjectionCoefficientsCircular.m.
Short description

Computation of the projection coefficients.
Call

[proj, modeIndices, Approximation, error] = ComputationOfTheProjectionCoefficientsCir-
cular(Imperfection, error_coef, nu, KR, ModeType, mode_t)

Input parameters
Imperfection Values of the imperfection profile in points [U,V].
error_coef Top error admitted in the approximation of the imperfection. error_coe f ∈ [0,1]
nu Poisson ratio.
KR Normalized rotational stiffness. Only used when BC = ’elastic’. Set KR=0 for BC = ’free’

and KR = inf for BC = ’clamped’.
ModeType Type of modes considered in the approximation of the imperfection. Possible

values: ’All’, ’Axisymmetric’.
mode_t Vector containing the information corresponding to the transverse vibration modes.

For every mode,

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

< i > < ξi > < ki > < ni > < ci > < ωi >

Output parameters
proj Vector of projection coefficients.
modeIndices Indexes of the modes included in vector proj as sorted in vector mode_t.
Approximation Approximated imperfection profile obtained as a linear combination of the

projection coefficients and the corresponding mode shapes.
error Maximum error committed in the approximation. error ∈ [0,1].

Function 6.5.4 — PolarScalarProduct.m.
Short description

Function that computes the scalar product between two functions expressed in polar coordi-
nates using

< f 1, f 2 >=
∫ rmax

rmin

∫
θmax

θmin

f 1(r,θ) f 2(r,θ)r dr dθ

Call
[I] = PolarScalarProduct(f1, f2, r_min, r_max, theta_min, theta_max)

Input parameters
f1 First function.
f2 Second function
r_min Lower boundary for variable r.
r_max Upper boundary for variable r
theta_min Lower boundary for variable θ .
theta_max Upper boundary for variable θ

Output parameters

66 Chapter 6. Matlab code

I Result of the integral.

6.5.2 Rectangular
ProjectionOfTheImperfectionRectangular.m
When the modeled plate is imperfect, i.e. when H>0 and the projection coefficients are not
introduced, this function calculates the imperfection profile, builds the 3D surface and computes the
projection coefficients that will be used by the time stepping function to expand w0 as in eq. (2.14).

To that end, the function calls successively RectangularImperfection.m and ComputationOfThe-
ProjectionCoefficientsRectangular.m. The input and output parameters are described below.

Function 6.5.5 — ProjectionOfTheImperfectionRectangular.m.
Short description

Computation of the imperfection profile and calculation of the projection coefficients from
the transverse modal basis of the perfect plate.
Call

[U, V, Imperfection, proj, modeIndices, Approximation] = ProjectionOfTheImperfection-
Rectangular(H, Lx, Ly, Nx, Ny, error_coef, ModeType, ImperfectionType, xWidth, yWidth,
Nphi)

Input parameters
H Height of the imperfection.
Lx Plate dimension X in meters.
Ly Plate dimension Y in meters.
Nx Number of discretization points in x.
Ny Number of discretization points in y.
error_coef Top error admitted in the approximation of the imperfection. error_coe f ∈ [0,1]
ModeType Type of modes considered in the approximation of the imperfection. Possible

values: ’All’.
ImperfectionType Shape of the imperfection profile. Possible values: ’2DRaisedCosine’.
xWidth Half-width of the 2D raised cosine in the X direction.
yWidth Half-width of the 2D raised cosine in the Y direction.
Nphi Number of transverse modes considered for the approximation.
Output parameters
U Matrix of x components of the points in the Imperfection. (Cartesian coordinates)
V Matrix of y components of the points in the Imperfection. (Cartesian coordinates)
Imperfection Values of the imperfection profile in points [U,V].
proj Vector of projection coefficients.
modeIndices Indices of the modes included in vector proj as sorted in vector mode_t.
Approximation Approximated imperfection profile obtained as a linear combination of the

projection coefficients and the corresponding mode shapes.

RectangularImperfection.m
The preset shape offered for the rectangular plate is a centered 2D raised cosine, defined by

g(x,y) =


H
4

(
1+ cos

(
π(x−Lx/2)

xwidth

))(
1+ cos

(
π(y−Ly/2)

ywidth

))
, if |x−Lx/2| ≤ xwidth

and|y−Ly/2| ≤ ywidth

0 otherwise,

(6.4)

6.5 Imperfection functions 67

and parametrized by

H Height of the imperfection
Lx Plate dimension X .
Ly Plate dimension Y .
xwidth Half-width of the 2D raised cosine in the X direction.
ywidth Half-width of the 2D raised cosine in the Y direction.

Figure 6.6 shows an example of a plate with a 2D raised cosine imperfection. The plate
dimensions are Lx = 0.5 m and Ly = 0.3 m. The imperfection height is H = 0.05 m. The raised
cosine half-width is 0.1 m in both directions. Thus, for the x direction, it goes from x = 0.15 m to
x = 0.35 m and for the y direction, from y = 0.5 m to y = 2.5 m. This shape is obtained by executing
[U,V,Imperfection] = RectangularImperfection(0.5,0.3,0.05,500,500,'2DRaised-

Cosine',0.1,0.1);

(a) (b)

Figure 6.6: Rectangular plate with Lx=0.5, Ly=0.3 with a 2D raised cosine imperfection where
H = 0.05 m xWidth=yWidth=0.1

. The imperfection has been discretized with Nx=Ny=500.

Function 6.5.6 — RectangularImperfection.m.
Short description

Building of the imperfection profile as a 3D surface.
Call

[U, V, Imperfection]=RectangularImperfection(Lx, Ly, H, Nx, Ny, ImperfectionType,
xWidth, yWidth)

Input parameters
Lx Plate dimension X in meters.
Ly Plate dimension Y in meters.
H Height of the imperfection.
Nx Number of discretization points in x.
Ny Number of discretization points in y.
ImperfectionType Shape of the imperfection profile. Possible values: ’2DRaisedCosine’.
xWidth Half-width of the 2D raised cosine in the X direction.
yWidth Half-width of the 2D raised cosine in the Y direction.
Output parameters
U Matrix of x components of the points in the Imperfection. (Cartesian coordinates)
V Matrix of y components of the points in the Imperfection. (Cartesian coordinates)
Imperfection Values of the imperfection profile in points [U,V].

68 Chapter 6. Matlab code

ComputationOfTheProjectionCoefficientsRectangular.m
This function computes the projection coefficients to express the imperfection profile as a series
expansion in terms of the transverse modal basis of the plate.

The profile is introduced by means of Imperfection which is obtained after executing Rect-
angularImperfection.m. However, the user can modify the code to manually introduce any other
shape that is consistent with the selected boundary conditions in BC.

The accuracy of the series is tunned with error_coef which fixes the maximum admitted
error in the approximation. The routine will compute projection coefficients by calculating the
Cartesian scalar product of the Imperfection with every mode shape in the modal basis, until the
approximation error is below error_coeff or until Nphi modes are considered. For the rectangular
case, the computation of the error uses a less strict formula than in the circular case given that the
series convergence would require a larger number of modes. The user is advised to set error_coef
= 0.01 which equals a maximum relative error of 1%.

ModeType indicates the group of modes that will be considered for the approximation. Up to
this version of the code, the only possible value is ModeType = 'All'. However, the parameter is
introduced aiming at possible updates or expansions of the program.

The function returns two main variables proj and modeIndices. Every position of proj
contains the projection coefficient that corresponds to the mode indicated by the same position
in modeIndices. The values in modeIndices contain the index of the mode in mode_t, i.e. the
index of the transverse modes when sorted according to their eigenfrequencies.

On the other hand, Approximation contains the shape obtained when expressing the imperfec-
tion profile by means of the coefficients in proj and the modes in modeIndices. Finally, error is
the error committed in the approximated profile.

As an example, the imperfection in Figure 6.6 is approximated by setting error_coef=0.01,
ModeType='All', BC='SimplySupported' and Nphi=1000. The function provides a vector
proj containing 157 values, first ten are displayed in Table 6.3. The approximated shape is shown
in Figure 6.7.

i modeIndices(i) proj(i)

1 1 2.35e-03
2 2 -4.10e-05
3 3 -1.90e-03
4 4 -3.55e-05
5 5 6.19e-07
6 6 5.90e-05
7 7 2.87e-05
8 8 -1.26e-03
9 9 -8.91e-07
10 10 1.20e-03

Table 6.3: First 10 projection coefficients calculated for the approximation of the 2D raised cosine
imperfection in Figure 6.6, when ModeType='All', Nphi=10 and error_coef=0.01.

Function 6.5.7 — ComputationOfTheProjectionCoefficientsRectangular.m.
Short description

Computation of the projection coefficients.
Call

6.5 Imperfection functions 69

Figure 6.7: Approximation of the 2D raised cosine imperfection in Figure 6.6, when ModeType='All',
Nphi=1000 and error_coef=0.01

[proj, modeIndices, Approximation, error] = ComputationOfTheProjectionCoefficientsRect-
angular(Imperfection, error_coef, ModeType, BC, Nphi, Lx, Ly)

Input parameters
Imperfection Values of the imperfection profile in points [U,V].
error_coef Top error admitted in the approximation of the imperfection. error_coe f ∈ [0,1]
ModeType Type of modes considered in the approximation of the imperfection. Possible

values: ’All’.
BC Boundary conditions. Possible values: ’SimplySupported’.
Nphi Number of transverse modes.
Lx Plate dimension X in meters.
Ly Plate dimension Y in meters.
Output parameters
proj Vector of projection coefficients.
modeIndices Indexes of the modes included in vector proj as sorted in vector mode_t.
Approximation Approximated imperfection profile obtained as a linear combination of the

projection coefficients and the corresponding mode shapes.
error Maximum error committed in the approximation. error ∈ [0,1].

Function 6.5.8 — CartesianScalarProduct.m.
Short description

Function that computes the scalar product between two functions expressed in cartesian
coordinates using

< f 1, f 2 >=
∫ xmax

xmin

∫ ymax

ymin

f 1(x,y) f 2(x,y) dx dy

Call
[I] = CartesianScalarProduct(f1, f2, x_min, x_max, y_min, y_max)

Input parameters
f1 First function.
f2 Second function

70 Chapter 6. Matlab code

x_min Lower boundary for variable x.
x_max Upper boundary for variable x
y_min Lower boundary for variable y.
y_max Upper boundary for variable y
Output parameters
I Result of the integral.

6.5.3 Common
ComputeEigenfrequenciesImperfectPlate.m
This function is used to compute the eigenfrequencies of the imperfect plate from the values for the
perfect plate and the Γ tensor as described in section 2.4. It is called by the main script when the user
has demanded a list of the eigenfrequencies of the imperfect plate. In addition, it is also run when
the DisplayEigenfrequenciesCircular/Rectangular.m is executed to obtain such eigenfrequencies
independently.

Since the function is devoted to calculate the eigenfrequencies of the imperfect plate, it re-
quires the parameters related to the approximation of the profile. The input values proj and
modeIndices are obtained from ProjectionOfTheImperfectionCircular/Rectangular.m or can be
manually introduced by the user. The angular eigenfrequencies are obtained from the last column
of the corresponding mode_t and e is the constant ε used to adapt the von Kármán equations to the
dimensioned or dimensionless form.

The GammaFileName indicates the name of the file that should contain the Gamma matrix
corresponding to the characteristics of the problem. The user should be specially careful and avoid
introducing a filename with the wrong contents. If this file does not exist, the function will calculate
the Gamma matrix and save it in a file named by GammaFileName.

Note that Gamma is a four-dimension matrix that might require a large amount of memory
and disk space. Given that the computer capacity may not be able to deal with matrices of size
proportional to the value of Nphi set in the main simulation, this function permits introducing a
lower value NA for the computation of the eigenfrequencies. This value corresponds to the size
of the A matrix in eq. (2.18) and therefore, to the number of computed eigenfrequencies. It is
also used as a flag to indicate to the main script that the eigenfrequencies should not be calculated.
When NA=0, the main script will skip this function.

Function 6.5.9 — ComputeEigenfrequenciesImperfectPlate.m.
Short description

Calculation of the eigenfrequencies of the imperfect plate using the eigenfrequencies of the
equivalent perfect plate and the Gamma factor.
Call

[Omega , A_matrix] = ComputeEigenfrequenciesImperfectPlate(proj, NA, modeIndices,
om, e, GammaFileName)

Input parameters
proj Vector of projection coefficients.
NA Number of eigenfrequencies to compute.
modeIndices Indices of the modes included in vector proj as sorted in vector mode_t.
om Angular eigenfrequencies of the perfect plate.
e Constant for dimensioning or non-dimensioning the von Kármán equations, corresponding to

ε ′.

6.6 Excitation and damping functions 71

GammaFileName Name of the file containing the Γ coefficient.
Output parameters
Omega Eigenfrequencies of the imperfect plate.
A_matrix Matrix corresponding to eq. (2.18).

6.6 Excitation and damping functions
6.6.1 Common

c_preset.m
This function creates a damping vector c of Nphi positions based on the modal angular frequencies
ωs ≡ om(s) and a preset function selected by X. The possible values of X are 'Undamped' and
'PowerLaw'. The former, creates an array of zeros whereas the latter builds a vector defined by
this expression

cs = dFacω
dExp
s +dCons. (6.5)

The damping vector c is used to create the matrices C,C1,C2 that are input in the time
integration functions. Check Section 6.7 and Section 6.9 for further details.

Function 6.6.1 — c_preset.m.
Short description

Function that loads the damping preset values.
Call

[c] = c_preset(X, om, Nphi, dFac, dExp, dCons)

Input parameters
X Switch value to select the preset. Possible values: ’Undamped’, ’PowerLaw’.
om Modal angular frequencies.
Nphi Number of modes and vector length.
dFac Multiplicative factor of the damping function.
dExp Exponent of the damping function.
dCons Additive constant to the damping function.
Output parameters
c Vector with the damping coefficients.

StrikeExcitation.m
This function creates a raised cosine time signal trying to reproduce the excitation generated by the
strike of a mallet. The curve g(t) is defined by

g(t) =

{
pm
2

[
1+ cos

(
π(t−t0)

Twid

)]
, if |t− t0| ≤ Twid

0, if |t− t0|> Twid ,
(6.6)

where pm is the force amplitude, t0 the initial time of the pulse and Twid the half-time-width of the
pulse. In the code, t0 ≡ T 0 and pm ≡ f m.

The output fex is a vector of Tn time steps sampled at sampling rate fs. If the excitation lasts
longer than Tn, i.e. (T0+2*Twid)>(Tn/fs), the function will neglect the samples after Tn.

The function works for both dimensioned and dimensionless magnitudes. If the inputs are
introduced in dimensionless form, the output will be also dimensionless. This should be the case
for the circular case.

72 Chapter 6. Matlab code

Figure 6.8 shows an example of strike excitation in a signal of T s= 1s equivalent to T n= 40000
samples when the sampling rate is f s = 40kHz. The pulse starts at T 0 = 200ms and lasts until
t = 400ms given that Twid = 100ms.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

[s]

Figure 6.8: Raised cosine signal with T 0 = 0.2s, Twid = 0.1s, f m = 100N, f s = 40kHz and
T n = 40000.

Function 6.6.2 — StrikeExcitation.m.
Short description

Function that generates a raised cosine time signal.
Call

[fex] = StrikeExcitation(T0, fm, Twid, fs, Tn)

Input parameters
T0 Initial time delay.
fm Strike amplitude.
Twid Raised cosine half time width.
fs Dimensionless time frequency.
Tn Number of samples of the output signal.
Output parameters
fex Output time signal.

HarmonicSignal.m
This function generates a sinusoid signal that cant have varying amplitude and frequency. The
signal starts at time T0, has Tn time steps and is sampled at rate fs.

The vector Times indicates the instants where every variation of frequency or amplitude should
happen. Note that the values are relative to T0. For every value in Times, a value of Amplitude
and frequency f must be given. This means that Times, Amplitude and f must have the same
length. In addition, the first value of Times should be 0.

Let us illustrate this with an example. A variable harmonic signal of 5 seconds will be generated.
The sample rate is set at fs=40000, thus the number of samples is Tn=200000. The initial time
and phase are T0=1s and phase=0. The sinusoid should last 3s and change every second, thus
Times=[0 1 2 3]. The frequency should increase from 1Hz to 3Hz at the first interval, stay
constant at the second interval, and decrease again to 1Hz at the last interval. For the amplitude, it
will stay constant at 1N at the first interval, rise to 5N at the second interval and finally, decrease
to 1N again. Therefore, the input parameters are f=[1 3 3 1] and Amplitude=[1 1 5 1]. The
result is plot in Figure 6.9.

On the other hand, if the user prefers a sinusoid signal with constant amplitude and frequency,
they should introduce a single value in Times, that will correspond to the time length of the signal,
and also single values in Amplitude and f.

Figure 6.10 shows an example of sine signal with constant frequency and amplitude. The

6.6 Excitation and damping functions 73

0 1 2 3 4 5
−5

0

5

[s]

Figure 6.9: Harmonic signal with T0=1s, phase=0, f=[1 3 3 1], Amplitude=[1 1 5 1], Times=[0
1 2 3], fs=40000Hz and Tn=200000.

initial time is set at T0=2.5s, the sampling rate and time length equal the previous example. The
frequency is set to f=2Hz and the amplitude to Amplitude=3N. The excitation should last 2.5s so
Times=2.5.

0 1 2 3 4 5
−4

−2

0

2

4

[s]

Figure 6.10: Harmonic signal with T0=2.5s, phase=pi/2, f=2, Amplitude=3, Times=2.5,
fs=40000Hz and Tn=200000.

Note that for the circular case, the parameters should be introduced in dimensionless form. In
addition, if the excitation lasts longer than Tn, i.e. (T0+Times(end))>(Tn/fs), the function will
neglect the samples after Tn.

Function 6.6.3 — HarmonicSignal.m.
Short description

Function that generates a harmonic wave time signal.
Call

[fex] = HarmonicSignal(T0, f, Amplitude, phase, Times, fs, Tn)

Input parameters
T0 Initial time delay.
f Vector containing the frequencies at every time position introduced in Times.
Amplitude Vector containing the amplitudes at every time position introduced in Times.
phase Initial phase of the harmonic signal.
Times Vector containing the times where the signal has a variation of amplitude or frequency.

If the length of Times is larger than unity, the initial value of this vector should always be
0.

fs Sampling rate.
Tn Number of samples of the output signal.
Output parameters
fex Output time signal.

74 Chapter 6. Matlab code

ColoredNoiseSignal.m
This function generates a colored noise signal for the plate excitation. A pseudo-random white
noise signal is first generated by means of the series expansion,

y =
N f

∑
i=0

cos(2π(fmin + i∆ f)+φi), N f =
fmax− fmin

∆ f
, (6.7)

where fmin and fmax are the frequency limits of the signal, ∆ f is the distance between two consecu-
tive frequencies in the series, and φi is the phase value that is obtained pseudo-randomly. Next, the
function is filtered so that the frequency spectrum corresponds to one of the colored noise types
below.

Thus, the input parameters of this function are the Color, the initial time T0, the Amplitude,
the frequency boundaries fmin and fmax, the distance between two frequencies deltaf and the
duration of the signal TimeLength. The function is sampled at sampling frequency fs and placed in
a vector of T n samples. The possible values for the Color parameter are
’White’ The output signal has equal power in bands with the same bandwidth.
’Pink’ The output signal has equal power in frequency bands that are proportionally wide.
’Blue’ The power density of the output signal increases 3dB per octave with increasing frequency.
’Red’ The power density of the output signal decreases 6dB per octave with increasing frequency.
’Purple’ The power density of the output signal increases 6dB per octave with increasing fre-

quency.
Note that for the circular case, the parameters should be introduced in dimensionless form. In

addition, if the excitation lasts longer than Tn, i.e. (T0+TimesLength)>(Tn/fs), the function
will neglect the samples after Tn.

Figures 6.11 to 6.15 show colored noise signals accompanied with their spectrum. They are
parametrized with the same values but with different colors.

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

[s]

(a)

0 200 400 600 800 1000
−150

−100

−50

0

Frequency [Hz]

(b)

Figure 6.11: White noise with T0 =0.2s, Amplitude=1, fmin=20Hz, fmax=1000Hz,
deltaf=1Hz, TimeLength=3s, fs=40kHz and Tn=140000.

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

[s]

(a)

0 200 400 600 800 1000
−150

−100

−50

0

Frequency [Hz]

(b)

Figure 6.12: Pink noise with T0 =0.2s, Amplitude=1, fmin=20Hz, fmax=1000Hz, deltaf=1Hz,
TimeLength=3s, fs=40kHz and Tn=140000.

6.6 Excitation and damping functions 75

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

[s]

(a)

0 200 400 600 800 1000
−100

−80

−60

−40

−20

0

Frequency [Hz]

(b)

Figure 6.13: Blue noise with T0 =0.2s, Amplitude=1, fmin=20Hz, fmax=1000Hz, deltaf=1Hz,
TimeLength=3s, fs=40kHz and Tn=140000.

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

[s]

(a)

0 200 400 600 800 1000
−150

−100

−50

0

Frequency [Hz]

(b)

Figure 6.14: Red noise with T0 =0.2s, Amplitude=1, fmin=20Hz, fmax=1000Hz, deltaf=1Hz,
TimeLength=3s, fs=40kHz and Tn=140000.

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

[s]

(a)

0 200 400 600 800 1000
−120

−100

−80

−60

−40

−20

0

Frequency [Hz]

(b)

Figure 6.15: Purple noise with T0 =0.2s, Amplitude=1, fmin=20Hz, fmax=1000Hz,
deltaf=1Hz, TimeLength=3s, fs=40kHz and Tn=140000.

Function 6.6.4 — ColoredNoiseSignal.m.
Short description

Computes a vector of colored noise.
Call

[fex] = ColoredNoiseSignal(Color, T0, Amplitude, fmin, fmax, deltaf, TimeLength, fs,
Tn)

Input parameters
Color Type of colored noise.
T0 Initial time delay.
Amplitude Amplitude of the harmonic or colored noise signal.
fmin Lower boundary of the noise frequency bandwidth.
fmax Upper boundary of the noise frequency bandwidth.
deltaf Distance between two consecutive frequencies in the cosine series used to generate the

noise.
TimeLength Duration of the excitation.
fs Dimensionless time frequency.
Tn Number of samples of the output signal.

76 Chapter 6. Matlab code

Output parameters
fex Output time signal.

6.7 Time integration functions

6.7.1 Common

The resolution of the system in the time domain is performed by ftime_imperfect_ECS.m or
ftime_imperfect_verlet.m depending on the value of scheme.

a) scheme = 'ECS' stands for Energy Conserving Scheme. In this case, ftime_imperfect_ECS.m
solves eqs. (5.8) and (5.9).

b) scheme = 'verlet' stands for Störmer-Verlet scheme. In this case, ftime_imperfect_verlet.m
solves eq. (5.13).

Both functions can be used for rectangular or circular plates but the variables must be adjusted
for every case. The construction and adaptation of the parameters is performed by the parsers
plate_def_circ.m/plate_def_rect.m and score_circ.m/score_rect.m. Although the user is strongly
advised to use the parsers rather than create the variables manually, the input arguments are shortly
described below.
Nphi is the number of transverse modes that will be considered for the simulation. It corresponds

to NΦ, the upper boundary of the series in eq. (2.8a). The value of Nphi determines the
frequency range of the simulation. It should be chosen so that the frequency corresponding
to this mode, i.e. fNΦ

is high enough to cover the energy cascade in the plate response.
Npsi is the number of in-plane modes that will be considered for the simulation. It corresponds

to NΨ, the upper boundary of the series in eq. (2.8b). The value of Npsi determines the
accuracy on the analysis of the nonlinear response. In [10], it was proved that the results
converge when Npsi>50.

Ai is the vector containing the projection coefficients that, in case of an imperfect plate, are used
to express the profile shape. If the plate is perfect, this vector should only contain 0’s. Note
that in case of an imperfect circular case, the values in Ai must be dimensionless. Refer to
ProjectionOfTheImperfectionCircular/Rectangular.m for further details.

H0, H1, H2 are the HHH tensor matrices. They are computed in dimensionless form for the cir-
cular case by H_tensorCircular.m and in dimensioned form for the rectangular case by
H_TensorRectangular.m.

C,C1,C2 are the auxiliary matrices used in the intermediate calculations of the time integration.
They are defined in eqs. (5.10) and (5.11). Some remarks:
• In the circular case, the values used to calculate these matrices are dimensionless.
• For the Störmer-Verlet scheme, to accelerate the computations, every element in C1 and
C2 is divided by the corresponding element in C.

Tn is the total number of time steps of the current simulation. It is obtained by Tn=fs*Ts, where
fs is the sampling rate and Ts is the simulation time length.

e corresponds to εr in eq. (5.7) and it is a constant that permits adapting the von Kármán equations
to the rectangular dimensioned form or the circular dimensionless form.
• Circular case: e = 12*(1-nu�2) where nu is the Poisson ratio.
• Rectangular case: e = (Lx*Ly/4)/rho*E where Lx and Ly are the plate dimensions,
rho is the volumetric mass density and E is the Young modulus.

f_time is a matrix containing the modal excitations. The size of f_time is size(f_time) =

[Nphi, Tn] so every row corresponds to a modal component and every column to a time
step. Some remarks:
• In the circular case, the values used to calculate this vector are dimensionless.

6.7 Time integration functions 77

• For the Störmer-Verlet scheme, to accelerate the computations, every element in f_time
is divided by the corresponding element in C.

rp is the vector containing the modal shape at every output point. This will be multiplied by the
state vector of the time integration scheme to obtain the output displacement. The size of rp
is size(rp) = [Nop,Nphi] where Nop corresponds to the number of output points. Thus,
every row of rp corresponds to an output point and every column to a modal component.
Remark:
• In the circular case, the values used to calculate this vector are dimensionless.

The returned variable out is the output displacement at the selected output points. Every
row of this matrix corresponds to a time step and every column to an output point, e.g. out(n, i)
corresponds to the displacement at sample n and point op(i).

Note that for circular plates, the output variables are dimensionless and must be multiplied by
the plate thickness hd to express them in meters or m/s.

The energy conserving scheme function ftime_imperfect_ECS.m provides more precision but
also requires a large amount of memory, since the three tensors H0, H1, H2 must be loaded. On
the contrary, ftime_imperfect_verlet.m is less memory and time demanding but the results are
slightly less accurate. The choice of the time integration scheme will should be a compromise
between the computer capacities and the parameters that determine the accuracy of the simulation,
these are the number of considered modes Nphi and Npsi, the simulation time Ts and the sampling
rate fsd.

ftime_imperfect_ECS.m

Function 6.7.1 — ftime_imperfect_ECS.m.
Short description

Function for the time integration of the von Kármán equations for imperfect plates using an
energy conserving scheme.
Call

[out] = ftime_imperfect_ECS(Nphi, Npsi, Ai, H0, H1, H2, C, C1,C2, Tn, e, f_time, rp)

Input parameters
Nphi Number of transverse modes included in the truncation.
Npsi Number of in-plane modes included in the truncation.
Ai Full vector of projection coefficients.
H0 Matrix of size N psi×N phi×N phi containing the H coupling coefficient tensor, H(i, p,q)=

H i
pq.

H1 Matrix that contains matrix H0 divided by the eigenfrequency of the corresponding in-plane
mode, i.e. H1(i, p,q) = H i

pq/ωi = H i
pq/ζ 2

i .
H2 Matrix that contains matrix H0 divided by the squared eigenfrequency of the corresponding

in-plane mode, i.e. H2(i, p,q) = H i
pq/ω2

i = H i
pq/ζ 4

i .

C Matrix corresponding to
(

1
k2 +

Css
2k

)
as defined in eq. (5.10).

C1 Matrix corresponding to
(
− 2

k2 +Kss
)

as defined in eq. (5.11).
C2 Matrix corresponding to

(1
k2 − cs

k

)
.

Tn Number of samples of the output signal.
e Dimensioning or non-dimensioning constant corresponding to ε ′.
f_time Time vector containing the excitation signal for every mode.
rp Vector containing the modal deformation at the output points.
Output parameters
out Displacement at the output points.

78 Chapter 6. Matlab code

ftime_imperfect_verlet.m

Function 6.7.2 — ftime_imperfect_verlet.m.
Short description

Function for the time integration of the von Kármán equations for imperfect plates using the
Störmer-Verlet scheme.
Call

[out] = ftime_imperfect_verlet(Nphi, Npsi, Ai, H1, C, C1, C2, Tn, e, f_time, rp)

Input parameters
Nphi Number of transverse modes included in the truncation.
Npsi Number of in-plane modes included in the truncation.
Ai Full vector of projection coefficients.
H1 Matrix that contains matrix H0 divided by the eigenfrequency of the corresponding in-plane

mode, i.e. H1(i, p,q) = H i
pq/ωi = H i

pq/ζ 2
i .

C Matrix corresponding to
(

1
k2 +

Css
2k

)
as defined in eq. (5.10).

C1 Matrix corresponding to
(
− 2

k2 +Kss
)

as defined in eq. (5.11).
C2 Matrix corresponding to

(1
k2 − cs

k

)
.

Tn Number of samples of the output signal.
e Dimensioning or non-dimensioning constant corresponding to ε ′.
f_time Time vector containing the excitation signal for every mode.
rp Vector containing the modal deformation at the output points.
Output parameters
out Displacement at the output points.
out_vel Velocity at the output points.

6.8 Ouput plot functions
This function is used to display the results of the time integration process. The possible representa-
tions are the time signal plot, the Fast Fourier transform and the spectrogram.

The vector to be plotted, i.e. the displacement or velocity at a single point, is placed in signal.
The user must next introduce the sampling frequency fsd expressed in Hz and the maximum
frequency Fc that will be displayed in the FFT representation or the spectrogram.

The next three parameters are used as flags:
TimeSignal

• TimeSignal = 0. The time signal is not plotted.
• TimeSignal = 1. The time signal is plotted.

FFT

• FFT = 0. The FFT is not plotted.
• FFT = 1. The FFT is plotted in terms of the dimensioned frequency, i.e. in Hertz, up

to Fc.
• FFT > 1. The FFT is plotted in terms of the dimensionless angular frequency, up to

the dimensionless equivalent of Fc.
Spectrogram

• Spectrogram = 0. The spectrogram is not plotted.
• Spectrogram = 1. The spectrogram is plotted in terms of time (seconds) and dimen-

sioned frequency up to Fc.

6.9 Parsers 79

The remaining parameters are only used if FFT = 2 , so the nondimensioning constant must
be computed. These are the Young modulus E, the plate thickness hd, the Poisson ratio nu, the
dimensioned plate radius Rd and the volumetric mass density rho.

The output figures are saved in file OutputPlots.fig.

6.8.1 Common

Function 6.8.1 — DisplayResults.m.
Short description

Function that plots the results of the time integration.
Call

[h] = DisplayResults(signal, fsd, Fc, TimeSignal, FFT, Spectrogram, E, hd, nu, Rd, rho)

Input parameters
signal Vector containing the signal for a single point.
fsd Sampling frequency in Hertz.
Fc Maximum frequency in Hertz contained in the spectrogram and the FFT plot.
TimeSignal Flag to select if the time signal must be plotted. Set TimeSignal = 1 to display it.
FFT Switch to select if the FFT must be computed. Set FFT = 1 to display the FFT in terms of

frequency in Hertz and FFT = 2 to display the FFT in terms of dimensionless angular
frequency.

Spectrogram Flag to select if the spectrogram must be shown. Set Spectrogram = 1 to display
it.

E Young modulus. Only used if FFT = 2.
hd Plate thickness. Only used if FFT = 2.
nu Poisson ratio. Only used if FFT = 2.
Rd Plate radius in meters. Only used if FFT = 2.
rho volumetric mass density. Only used if FFT = 2.
Output parameters
h Figure object containing the output plots.

6.9 Parsers
6.9.1 Circular

plate_def_circ.m
This function reads the files defined in the main script and builds the variables necessary for the
time simulation. Refer to ?? for a detailed description of the file contents.

First of all, the files introduced in PlateCharacteristicsFileName and SimulationParameters-
FileName are loaded, if they do not exist, the user is informed and preset values are assigned.

The mode files are next loaded, if they do not exist, the mode variables mode_t and mode_l

will be computed and saved.
Next, LoadHTensorCircular.m is called. This function looks for a file containing the H matrices

that correspond to the same boundary conditions and parameters, i.e. nu, KR and KT depending on
the case. If such a file does not exist or the found ones do not include enough modes, i.e. less than
Nphi and Npsi, the H matrix is computed and the file is created.

The following steps concern the imperfect plate. If the studied plate does not involve any defect,
they are skipped. As seen in the previous sections, there are two ways to parametrize the imperfect
plate, either by introducing the projection coefficients and modes or by selecting one of the preset
shapes and the corresponding characteristics. In the latter case, the projection coefficients are

80 Chapter 6. Matlab code

computed. If the user has required it, the eigenfrequencies of the imperfect plate are also calculated
and saved.

Finally, variables are adapted for the dimensionless equations and the auxiliary vectors are
computed. Although some of them will not be used independently, the output arguments are briefly
described in the table below for the sake of completeness.

Function 6.9.1 — plate_def_circ.m.
Short description

This function parses the files indicated in the main script in order to define the plate and
create the necessary variables for the code.
Call

[Rd, hd, E, BC, e, Nphi, Npsi, scheme, H0, H1, H2, filename, Ai, C, C1, C2, k_t, c_t, xkn,
JJ, II, Kkn, rp, tnd, fs, Tsd] = plate_def_circ(PlateCharacteristicsFileName, SimulationParame-
tersFileName, OutputFileName, GammaFileName)

Input parameters
PlateCharacteristicsFileName Name of the file containing the plate characteristics parame-

ters.
SimulationParametersFileName Name of the file containing the simulation parameters.
OutputFileName Name used to save the results of the program execution.
GammaFileName Name of the file containing the Gamma matrix. If a file with this name does

not exist, it will be created during the performance of the code.
Output parameters
Rd Plate radius in meters.
hd Dimensioned plate thickness in meters.
E Young modulus in Pa.
BC Type of boundary conditions at the edge. Possible values: ’free’, ’clamped’, ’elastic’.
e Non-dimensioning factor corresponding to ε .
Nphi Number of transverse modes kept in the truncation.
Npsi Number of in-plane modes kept in the truncation.
scheme Time integration scheme. Possible values: ’ECS’, ’verlet’.
H0 Matrix of size N psi×N phi×N phi containing the H coupling coefficient tensor, H(i, p,q)=

H i
pq.

H1 Matrix that contains matrix H0 divided by the eigenfrequency of the corresponding in-plane
mode, i.e. H1(i, p,q) = H i

pq/ωi = H i
pq/ζ 2

i .
H2 Matrix that contains matrix H0 divided by the squared eigenfrequency of the corresponding

in-plane mode, i.e. H2(i, p,q) = H i
pq/ω2

i = H i
pq/ζ 4

i .

filename String containing the path and the filename to save the results of the code.
Ai Full vector of projection coefficients.
C Matrix corresponding to

(
1
k2 +

Css
2k

)
as defined in eq. (5.10).

C1 Matrix corresponding to
(
− 2

k2 +Kss
)

as defined in eq. (5.11).
C2 Matrix corresponding to

(1
k2 − cs

k

)
.

k_t Vector containing the number of nodal diameters of the transverse modes.
c_t Vector containing the configuration of the transverse modes.
xkn Vector containing the eigenvalues ξ of the transverse modes.
JJ Vector containing J̃ f

k (x), J̃c
k (x) or J̃e

k (x) depending on the value of BC.
II Vector containing Ĩ f

k (x), Ĩc
k (x) or Ĩe

k (x) depending on the value of BC.

6.9 Parsers 81

Kkn Vector containing the inverse of the norm of the transverse modes.
rp Vector containing the modal deformation at the output points.
tnd Non-dimensioning time factor.
fs Dimensionless sampling frequency.
Tsd Time length of the output signal in seconds.

82 Chapter 6. Matlab code

LoadHTensorCircular.m

Function 6.9.2 — LoadHTensorCircular.m.
Short description

Function that loads the H file or creates it if necessary.
Call

[H0, H1, H2] = LoadHTensorCircular(BC, Nphi, Npsi, nu, KR, KT, dr_H, scheme)

Input parameters
BC Type of boundary conditions at the edge. Possible values: ’free’, ’clamped’, ’elastic’.
Nphi Number of transverse modes kept in the truncation.
Npsi Number of in-plane modes kept in the truncation.
nu Poisson ratio.
KR Rotational stiffness normalized with respect to bending stiffness, KR = Kr/D. Only used

when BC = ’elastic’.
KT transverse stiffness normalized with respect to bending stiffness, KT = Kt/D. Only used

when BC = ’elastic’.
dr_H Integration step used for computing the H coefficients.
scheme Time integration scheme. Possible values: ’ECS’, ’verlet’.
Output parameters
H0 Matrix of size N psi×N phi×N phi containing the H coupling coefficient tensor, H(i, p,q)=

H i
pq.

H1 Matrix that contains matrix H0 divided by the eigenfrequency of the corresponding in-plane
mode, i.e. H1(i, p,q) = H i

pq/ωi = H i
pq/ζ 2

i .
H2 Matrix that contains matrix H0 divided by the squared eigenfrequency of the corresponding

in-plane mode, i.e. H2(i, p,q) = H i
pq/ω2

i = H i
pq/ζ 4

i .

score_circ.m
This function loads the score file ScoreFileName introduced in the main script. If it is not found,
the preset values are loaded. The other arguments are obtained after executing plate_def_circ.m.

Next, the variable score_cell described in section 6.10.1 is read and the functions that generate
the excitation signals are called. The output parameter f_time corresponds to the excitation term
p(n) in eq. (5.8) and eq. (5.13).

Function 6.9.3 — score_circ.m.
Short description

Parser for the excitation file.
Call

[f_time, Tn] = score_circ(ScoreFileName, Rd, hd, E, BC, e, Nphi, scheme, C, k_t, c_t,
xkn, JJ, II, Kkn, tnd, fs, Tsd)

Input parameters
ScoreFileName Name of the file containing the excitation variable.
Rd Plate radius in meters.
hd Dimensioned plate thickness in meters.
E Young modulus in Pa.
BC Type of boundary conditions at the edge. Possible values: ’free’, ’clamped’, ’elastic’.
e Dimensioning or non-dimensioning factor corresponding to ε ′.

6.9 Parsers 83

Nphi Number of transverse modes kept in the truncation.
scheme Time integration scheme. Possible values: ’ECS’, ’verlet’.
C Matrix corresponding to

(
1
k2 +

Css
2k

)
as defined in eq. (5.10).

k_t Vector containing the number of nodal diameters of the transverse modes.
c_t Vector containing the configuration of the transverse modes.
xkn Vector containing the eigenvalues ξ of the transverse modes.
JJ Vector containing J̃ f

k (x), J̃c
k (x) or J̃e

k (x) depending on the value of BC.
II Vector containing Ĩ f

k (x), Ĩc
k (x) or Ĩe

k (x) depending on the value of BC.
Kkn Vector containing the inverse of the norm of the transverse modes.
tnd Non-dimensioning time factor.
fs Dimensionless sampling frequency.
Tsd Time length of the output signal in seconds.

Output parameters
f_time Time vector containing the excitation signal for every mode.
Tn Number of samples of the output signal.

6.9.2 Rectangular
plate_def_rect.m
This function reads the files defined in the main script and builds the variables necessary for the
time simulation. Refer to ?? for a detailed description of the file contents.

First of all, the files introduced in PlateCharacteristicsFileName and SimulationParameters-
FileName are loaded, if they do not exist, the user is informed and preset values are assigned.

The mode file is next loaded and if it does not exist, the variable mode_t is computed and saved.
Next, LoadHTensorRectangular.m is called. This function looks for a file containing the H

matrices that correspond to the same boundary conditions and plate size, i.e. Lx and Ly. If such a
file does not exist or the found ones do not include enough modes, i.e. less than Nphi and Npsi,
the H matrix is computed and the file is created. Note that the execution of H_tensorRectangular.m
is preceded by AiryStressFactorsCalculation.m.

The following steps concern the imperfect plate. If the studied plate does not involve any defect,
they are skipped. As seen in the previous sections, there are two ways to parametrize the imperfect
plate, either by introducing the projection coefficients and modes or by selecting one of the preset
shapes and the corresponding characteristics. In the latter case, the projection coefficients are
computed. If the user has required it, the eigenfrequencies of the imperfect plate are also calculated
and saved.

Finally, variables are adapted for the dimensionless equations and the auxiliary vectors are
computed. Although some of them will not be used independently, the output arguments are briefly
described in the table below for the sake of completeness.

Function 6.9.4 — plate_def_rect.m.
Short description

This function parses the files indicated in the main script in order to define the plate and
create the necessary variables for the code.
Call

[Lx, Ly, hd, E, rho, BC, e, Nphi, Npsi, scheme, H0, H1, H2, filename, Ai, C, C1, C2, kx, ky,
om_dim, rp, tnd, fsd, Tsd] = plate_def_rect(PlateCharacteristicsFileName, SimulationParame-
tersFileName, OutputFileName, GammaFileName)

84 Chapter 6. Matlab code

Input parameters
PlateCharacteristicsFileName Name of the file containing the plate characteristics parame-

ters.
SimulationParametersFileName Name of the file containing the simulation parameters.
OutputFileName Name used to save the results of the program execution.
GammaFileName Name of the file containing the Gamma matrix. If a file with this name does

not exist, it will be created during the performance of the code.
Output parameters
Lx Plate dimension X in meters.
Ly Plate dimension Y in meters.
hd plate thickness in meters.
E Young modulus in Pa.
rho volumetric mass density.
BC Type of boundary conditions at the edge. Possible value: ’SimplySupported’.
e Constant factor that corresponds to ε for the rectangular plate.
Nphi Number of transverse modes kept in the series truncation.
Npsi Number of in-plane modes kept in the series truncation.
scheme Time integration scheme. Possible values: ’ECS’, ’verlet’.
H0 Matrix of size N psi×N phi×N phi containing the H coupling coefficient tensor, H(i, p,q)=

H i
pq.

H1 Matrix that contains matrix H0 divided by the eigenfrequency of the corresponding in-plane
mode, i.e. H1(i, p,q) = H i

pq/ωi = H i
pq/ζ 2

i .
H2 Matrix that contains matrix H0 divided by the squared eigenfrequency of the corresponding

in-plane mode, i.e. H2(i, p,q) = H i
pq/ω2

i = H i
pq/ζ 4

i .

filename String containing the path and the filename to save the results of the code.
Ai Full vector of projection coefficients.
C Matrix corresponding to

(
1
k2 +

Css
2k

)
as defined in eq. (5.10).

C1 Matrix corresponding to
(
− 2

k2 +Kss
)

as defined in eq. (5.11).
C2 Matrix corresponding to

(1
k2 − cs

k

)
.

kx Vector containing the X modal indexes of the transverse eigenmodes.
ky Vector containing the Y modal indexes of the transverse eigenmodes.
om_dim Angular eigenfrequencies of the transverse direction. Note that

om_dim = sqrt(D/rho/hd)*((kx*pi/Lx).�2 + (ky*pi/Ly).�2).
xkn Vector containing the eigenvalues ξ of the transverse modes.
JJ Vector containing J̃ f

k (x), J̃c
k (x) or J̃e

k (x) depending on the value of BC.
II Vector containing Ĩ f

k (x), Ĩc
k (x) or Ĩe

k (x) depending on the value of BC.
Kkn Vector containing the inverse of the norm of the transverse modes.
rp Vector containing the modal deformation at the output points.
tnd Non-dimensioning time factor. For the rectangular plate, tnd=1. It is only added because it

is necessary for the time integration function.
fsd Sampling rate.
Tsd Time length of the output signal in seconds.

6.9 Parsers 85

LoadHTensorRectangular.m

Function 6.9.5 — LoadHTensorRectangular.m.
Short description

Function that loads the H file or creates it if necessary.
Call

[H0, H1, H2] = LoadHTensorRectangular(BC, Nphi, Npsi, Lx, Ly, mode_t)

Input parameters
BC Type of boundary conditions at the edge. Possible values: ’SimplySupported’.
Nphi Number of transverse modes kept in the truncation.
Npsi Number of in-plane modes kept in the truncation.
Lx Plate dimension X in meters.
Ly Plate dimension Y in meters.
mode_t Vector containing the information corresponding to the first Nphi transverse vibration

modes. For every mode,

Column 1 Column 2 Column 3 Column 4

< i > < kx > < ky > < ωi >

Output parameters
H0 Matrix of size N psi×N phi×N phi containing the H coupling coefficient tensor, H(i, p,q)=

H i
pq.

H1 Matrix that contains matrix H0 divided by the eigenfrequency of the corresponding in-plane
mode, i.e. H1(i, p,q) = H i

pq/ωi = H i
pq/ζ 2

i .
H2 Matrix that contains matrix H0 divided by the squared eigenfrequency of the corresponding

in-plane mode, i.e. H2(i, p,q) = H i
pq/ω2

i = H i
pq/ζ 4

i .

score_rect.m
This function loads the score file ScoreFileName introduced in the main script. If it is not found,
the preset values are loaded. The other arguments are obtained after executing plate_def_rect.m.

Next, the variable score_cell described in section 6.10.1 is read and the functions that
generate the excitation signals are called. The output parameter f_time corresponds to the
excitation term p(n) in eq. (5.8) and eq. (5.13).

Function 6.9.6 — score_rect.m.
Short description

Parser for the excitation file.
Call

[f_time, Tn] = score_rect(ScoreFileName, Lx, Ly, hd, rho, kx, ky, BC, Nphi, scheme, C,
fsd, Tsd)

Input parameters
ScoreFileName Name of the file containing the excitation variable.
Lx Plate dimension X in meters.
Ly Plate dimension Y in meters.
hd Plate thickness in meters.

86 Chapter 6. Matlab code

rho volumetric mass density.
kx Vector containing the X modal indexes of the transverse eigenmodes.
ky Vector containing the Y modal indexes of the transverse eigenmodes.
BC Type of boundary conditions at the edge. Possible values: ’SimplySupported’.
Nphi Number of transverse modes kept in the truncation.
scheme Time integration scheme. Possible values: ’ECS’, ’verlet’.
C Matrix corresponding to

(
1
k2 +

Css
2k

)
as defined in eq. (5.10).

fsd Sampling rate.
Tsd Time length of the output signal in seconds.

Output parameters
f_time Time vector containing the excitation signal for every mode.
Tn Number of samples of the output signal.

6.10 Input file contents
6.10.1 Circular plate

Plate characteristics
This file includes the parameters used for the plate modeling. First two blocks refer to material and
geometrical description. Third block, contains the details referred to the imperfection. Next group
of variables concerns the damping values and last block refers to the boundary conditions at the
edge.

Special remark must be made with regard to the imperfection characteristics block. When
a perfect plate is being modeled, the imperfection height H should be set to 0. Otherwise, the
imperfection profile can be described in two different ways.

a) If the linear combination of modeshapes that configure the imperfection profile is known,
these should be introduced in proj and modeIndices.

b) If the projection coefficients are not known, proj and modeIndices should be left empty and
the imperfection must be approximated to one of the shapes listed in ImperfectionType,
by filling the values of tau1, tau2, ModeType and error_coef. This way, the computation
of proj and modeIndices will be performed automatically by the code.

Damping can be defined manually, by defining vector c and leaving X empty or automatically,
by choosing one of the presets included in function c_preset. When the preset option is chosen,
the values of dFac, dExp and dCons must be also introduced.

File 6.10.1 — PlateCharacteristics-Circular.mat.

Material parameters
Name Type Size Description Recommended

values

nu Real 1×1 Poisson ratio [−1,0.5]
E Real 1×1 Young modulus in Pascal. (0,300×109)
rho Real 1×1 Volumetric mass density in kg/m3. (0,10000)

6.10 Input file contents 87

Geometrical characteristics
Name Type Size Description Recommended

values

Rd Real 1×1 Dimensioned plate radius in meters (0,∞)
hd Real 1×1 Dimensioned plate thickness in meters (0,O

(
10−3

)
)

Imperfection characteristics
Name Type Size Description Recommended

values

H Real 1×1 Height of the imperfection in meters.
Set H = 0 for a perfect plate.

[0,O
(
10−2

)
]

Imperfec-
tionType

String 1×1 Shape of the imperfection. ’Spherical’
’Parabolic’

tau2 Real 1×1 When ImperfectionType =

'Parabolic', tau2 is the parabola
order.

(
−10250,10250

)
ModeType String 1×1 Type of modes considered in the ap-

proximation of the imperfection.
’All’
’Axisymmetric’

error_coef Real 1×1 Top error admitted in the imperfection
approximation.

[0,1]

proj Real Np×1 Projection coefficients corresponding
to the Np projected modes. Leave
empty if the imperfection must be ap-
proximated according to the other pa-
rameters.

(−100,100)

modeIndices Integer Np×1 Indexes of the N p projected modes in-
cluded in proj. Leave empty if the im-
perfection must be approximated ac-
cording to the other parameters.

[1,N phi]

Damping parameters
Name Type Size Description Recommended

values

X String 1×1 Damping value preset selector. Leave
empty for manual introduction.

’Undamped’
’PowerLaw’

c Real N×1 Damping value vector. [0,∞)
dFac Real 1×1 Multiplicative factor of the damping

function.
[0,∞)

dExp Real 1×1 Exponent of the damping function. (−∞,∞)
dCons Real 1×1 Additive constant to the damping func-

tion.
[0,∞)

88 Chapter 6. Matlab code

Boundary condition parameters
Name Type Size Description Recommended

values

BC String 1×1 Type of boundary conditions at the
edge.

’free’
’clamped’
’elastic’

KR Real 1×1 Normalized rotational stiffness, KR =
Kr/D. Where Kr is the dimensioned
rotational stiffness and D is the plate
flexural stiffness. Only used when
BC = ’elastic’. (KR f ree = 0 and
KRclamped = ∞)

(0,∞)

KT Real 1×1 Normalized transverse stiffness, KT =
Kt/D. Where Kt is the dimensioned
transverse stiffness and D is the plate
flexural stiffness. Only used when
BC = ’elastic’. (KTf ree = 0 and
KTclamped = ∞)

(0,∞)

Simulation parameters

This file includes the variables related to the simulation. The first block affects the accuracy of the
results. Nphi corresponds to the number of transverse modes that will be considered for the modal
approach, i.e. the number of modes included before the truncation of the series in eq. (2.8a). Thus,
the larger Nphi, the wider the frequency range covered by the simulation. To ensure that the whole
plate response is analyzed, Nphi should be set to a value such that fNΦ

is higher than the maximum
frequency reached with the energy cascade. Generally, to cover the plate response in the audible
range Nphi∈ (1000,1500). To test if the selected Nphi was the appropriate, plot the spectrogram
of the results (output displacement or velocity) and check the maximum frequency reached by the
response. On the other hand, Npsi corresponds to the number of the in-plane modes considered
before the truncation of the series in eq. (2.8b). The value of Npsi affects to the coupling accuracy.
It has been proved that convergence is reached for values of Npsi larger than 50, thus, it is advised
to set Npsi ∈ (50,100).

NA determines the number of eigenfrequencies of the imperfect plate that will be computed.
Thus, it is not necessary when the plate does not present any profile imperfection. When set to 0,
the computation of the eigenfrequencies is skipped. Mathematically, NA corresponds to the size
of A in eq. (2.18). This matrix is computed from the ΓΓΓ coefficients. Given that the creation of the
Gamma matrix requires a large amount of memory, since it is a 4D vector of size NA4, the code offers
the possibility of setting a low value for NA so that memory problems are avoided.

The time simulation parameters include the election of the time stepping scheme, either 'ECS'
for the energy conserving scheme or 'verlet' for the Störmer-Verlet scheme. The sampling
frequency fsd must be set above the stability limit, i.e. fs ≥ π fNΦ

. The recommended value is
three times the stability limit. Tsd determines the time-length of the output signal.

Finally, the geometrical parameters are used to specify the accuracy of spatial discretization in
some routines. The values of Nr and Nth are used in routines such as the computation of the mode
shapes or the construction of the imperfection profile. Values around 500 provide enough resolution
for the typical computations. On the other hand, dr_H corresponds to the discretization step used
for the computation of the H tensor. The recommended value for this parameter is dr_H=1e-4. The

6.10 Input file contents 89

last input argument corresponds to the group of output points. The number of output points is
limited by the computer capacity. If a large amount of outputs is needed, consider decreasing the
simulation time or the sampling frequency.

File 6.10.2 — SimulationParameters-Circular.mat.

Accuracy parameters
Name Type Size Description Recommended

values

Nphi Integer 1×1 Number of transverse modes included
in the truncation

(0,1500)

Npsi Integer 1×1 Number of in-plane modes included in
the truncation.

(50,100)

NA Integer 1×1 Number of modes considered to com-
pute the eigenfrequencies of the imper-
fect plate.

[0,N phi]

Time simulation parameters
Name Type Size Description Recommended

values

scheme String 1×1 Type of time stepping scheme ’ECS’
’verlet’

fsd Real 1×1 Dimensioned sampling rate in seconds 3π fNΦ

Tsd Real 1×1 Dimensioned simulation time in sec-
onds

(0,∞)

Geometrical model parameters
Names Type Size Description Recommended

values

Nr Integer 1×1 Number of discretization points for the
radius variable r.

O(500)

Nth Integer 1×1 Number of discretization points for the
angle variable θ .

O(500)

dr_H Real 1×1 Discretization step used for computing
the H coefficients

1×10−4

op Real Nop×2 Matrix containing the Nop output points
where the displacement and velocity
must be predicted. First column corre-
sponds to the angle and second column
to the normalized radius.
op(i, :) = [θi, ri/Rd].

[(0,2π), [0,1]]

Score parameters

The score parameters file includes a single variable score_cell that contains all the excitations
that will be input to the plate. There are three possible types, ’Strike’ for a raised cosine excitation
reproducing the strike of a mallet, ’Harmonic’ for a sinusoidal input and ’ColoredNoise’ for a wide
band input.

Each type is accompanied with a specific set of values. The common parameter T0 defines the

90 Chapter 6. Matlab code

time shift between the start of the current excitation and the previous one. This way, first input starts
at time t0,1 = T 01, second excitation at time t0,2 = T 01 +T 02 and so on. The rest of the parameters
are described below. For a detailed description of every type of excitation refer to Section 6.6.

File 6.10.3 — ScoreParameters-Circular.mat.

Name Type Size Description Recommended
values

score_cell Cell Ns×2 List of excitation inputs.
score_cell(i, :) =
[ExcitationTypei, Parametersi]

’Strike’
’Harmonic’
’ColoredNoise’

score_cell syntax
Excitation Type Parameters

’Strike’ [T0 fm Twid fp_th fp_r]
’Harmonic’ {T0 [Frequency] [Amplitude] Phase [Times] fp_th fp_r}
’ColoredNoise’ {Color [T0 Amplitude fmin fmax deltaf TimeLength fp_th fp_r]}

6.10 Input file contents 91

Parameters
Name Type Size Description Recommended

values

T0 Real 1×1 Initial time delay. t0,i = ∑
i
j=1 T 0 j (0,T sd− t0,i−1)

fm Real 1×1 Strike amplitude in Newton. (0,1000)
Twid Real 1×1 Raised cosine half time width (0,T sd−2Twid)
fp_th Real 1×1 Angular component of the excitation

point.
(0,2π)

fp_r Real 1×1 Radial component of the excitation
point in normalized units.

[0,1]

Times Real NT ×1 Vector containing the times where the
harmonic signal has a variation of am-
plitude or frequency. If NT > 1, the ini-
tial value of this vector should always
be 0.

(0,T sd−T 0)

Frequency Real NT ×1 Vector containing the frequencies at ev-
ery time position introduced in Times.

(0, f sd/2)

[Amplitude] Real NT ×1 Vector containing the amplitudes at ev-
ery time position introduced in Times.

(0,∞)

Phase Real 1×1 Initial phase of the harmonic signal (0,2π)
Amplitude Real 1×1 Amplitude of the colored noise signal. (0,1000)
TimeLength Real 1×1 Duration of the excitation. (0,T sd−T 0)
Color String 1×1 Color of the noise ’White’

’Pink’
’Blue’
’Red’
’Purple’

fmin Real 1×1 Lower frequency of the noise signal
spectrum.

(0, f sd/2)

fmax Real 1×1 Upper frequency of the noise signal
spectrum.

(0, f sd/2)

deltaf Real 1×1 Frequency spacing between to consec-
utive frequencies on the generation of
the noise signal.

(0, f max− f min)

6.10.2 Rectangular plate
The variables included in the input files for rectangular plates are analogous to those for circular
plates with the exception of the coordinates. Whereas circular plates are defined in polar coordinates,
rectangular ones are described with Cartesian. Refer to section 6.10.1 for further explanations.

Plate characteristics
File 6.10.4 — PlateCharacteristics-Rectangular.mat.

92 Chapter 6. Matlab code

Material parameters
Name Type Size Description Recommended

values

nu Real 1×1 Poisson ratio [−1,0.5]
E Real 1×1 Young modulus in Pascal. (0,300×109)
rho Real 1×1 Volumetric mass density in kg/m3. (0,10000)

Geometrical characteristics
Name Type Size Description Recommended

values

Lx Real 1×1 Plate dimension X in meters (0,∞)
Ly Real 1×1 Plate dimension Y in meters (0,∞)
hd Real 1×1 Dimensioned plate thickness in meters (0,O(10−3))

Imperfection characteristics
Name Type Size Description Recommended

values

H Real 1×1 Height of the imperfection in meters. (0,O(10−2))
Imperfec-
tionType

String 1×1 Shape of the imperfection. ’2DRaisedCosine’

xWidth Real 1×1 Half-width of the raised cosine shape
in direction X

(0,Lx/2)

yWidth Real 1×1 Half-width of the raised cosine shape
in direction Y

(0,Ly/2)

ModeType String 1×1 Type of modes considered in the ap-
proximation of the imperfection.

’All’

error_coef Real 1×1 Top error admitted in the imperfection
approximation.

[0,1]

proj Real Np×1 Projection coefficients corresponding
to the Np projected modes. Leave
empty if the imperfection must be ap-
proximated according to the other pa-
rameters.

(−∞,∞)

modeIndices Integer Np×1 Indexes of the N p projected modes in-
cluded in proj. Leave empty if the im-
perfection must be approximated ac-
cording to the other parameters.

[1,N phi]

Damping parameters
Name Type Size Description Recommended

values

X String 1×1 Damping value preset selector. Leave
empty for manual introduction.

’Undamped’
’PowerLaw’

c Real N×1 Damping value vector. [0,∞)

6.10 Input file contents 93

dFac Real 1×1 Multiplicative factor of the damping
function.

[0,∞)

dExp Real 1×1 Exponent of the damping function. (−∞,∞)
dCons Real 1×1 Additive constant to the damping func-

tion.
[0,∞)

Boundary condition parameters
Name Type Size Description Recommended

values

BC String 1×1 Type of boundary conditions at the
edge.

’SimplySupported’

Simulation parameters

File 6.10.5 — SimulationParameters-Rectangular.mat.

Accuracy parameters
Name Type Size Description Recommended

values

Nphi Integer 1×1 Number of transverse modes included
in the truncation

(0,O(103))

Npsi Integer 1×1 Number of in-plane modes included in
the truncation.

(0,O(10))

NA Integer 1×1 Number of modes considered to com-
pute the eigenfrequencies of the imper-
fect plate.

(0,O(102))

Time simulation parameters
Name Type Size Description Recommended

values

scheme String 1×1 Type of time stepping scheme ’ECS’
’verlet’

fsd Real 1×1 Dimensioned sampling rate in seconds 3π fNΦ

Tsd Real 1×1 Dimensioned simulation time in sec-
onds

(0,∞)

94 Chapter 6. Matlab code

Geometrical model parameters
Names Type Size Description Recommended

values

Nx Integer 1×1 Number of discretization points for the
x dimension.

(0,∞)

Ny Integer 1×1 Number of discretization points for the
y dimension.

(0,∞)

op Real Nop×2 Matrix containing the Nop output points
where the displacement and velocity
must be predicted.
op(i, :) = [xi, yi].

[[0,Lx], [0,Ly]]

Score parameters

File 6.10.6 — ScoreParameters-Rectangular.mat.

Name Type Size Description Recommended
values

score_cell Cell Ns×2 List of excitation inputs.
score_cell(i, :) =
[ExcitationTypei, Parametersi]

’Strike’
’Harmonic’
’ColoredNoise’

score_cell syntax
Excitation Type Parameters

’Strike’ [T0 fm Twid fp_x fp_y]
’Harmonic’ [T0 [Frequency] [Amplitude] Phase [Times] fp_x fp_y]
’ColoredNoise’ {Color [T0 Amplitude fmin fmax deltaf TimeLength fp_x fp_y]}

6.10 Input file contents 95

Parameters
Name Type Size Description Recommended

values

T0 Real 1×1 Initial time delay. t0,i = ∑
i
j=1 T 0 j (0,T sd− t0,i−1)

fm Real 1×1 Strike amplitude in Newton. (0,1000)
Twid Real 1×1 Raised cosine half time width (0,T sd−2Twid)
fp_x Real 1×1 x component of the excitation point. (0,Lx)
fp_y Real 1×1 y component of the excitation point. [0,Ly]
Times Real NT ×1 Vector containing the times where the

harmonic signal has a variation of am-
plitude or frequency. If NT > 1, the ini-
tial value of this vector should always
be 0.

(0,T sd−T 0)

Frequency Real NT ×1 Vector containing the frequencies at ev-
ery time position introduced in Times.

(0, f sd/2)

[Amplitude] Real NT ×1 Vector containing the amplitudes at ev-
ery time position introduced in Times.

(0,∞)

Phase Real 1×1 Initial phase of the harmonic signal (0,2π)
Amplitude Real 1×1 Amplitude of the colored noise signal. (0,1000)
TimeLength Real 1×1 Duration of the excitation. (0,T sd−T 0)
Color String 1×1 Color of the noise ’White’

’Pink’
’Blue’
’Red’
’Purple’

fmin Real 1×1 Lower frequency of the noise signal
spectrum.

(0, f sd/2)

fmax Real 1×1 Upper frequency of the noise signal
spectrum.

(0, f sd/2)

deltaf Real 1×1 Frequency spacing between to consec-
utive frequencies on the generation of
the noise signal.

(0, f max− f min)

6.10.3 Common
Gamma tensor file
The Gamma file contains the coupling coefficient Γ. Preferably, this tensor should be computed
before the execution of the code. If the file does not exist, the matrix Gamma will be computed
during the performance of the program.

File 6.10.7 — Gamma.mat.

Name Type Size Description Recommended
values

Gamma Real NA×NA×NA×NA Gamma coefficients
Gamma[s, p,q,r] = Γs

pqr

(−∞,∞)

7. C++ code

The C++ code has been finalized recently and must be considered as a beta preliminary version. In
particular the Verlet scheme has shown some instabilities in the preliminary tests that is not yet
resolved. The documentation is still under preparation and should be ready in summer 2017.

IV

8 Matlab cases . 101
8.1 Case C1: Perfect circular plate with free edge
8.2 Case C2: Perfect circular plate with clamped edge
8.3 Case C3: Imperfect spherical circular plate with

elastic edge
8.4 Case R5: Imperfect spherical circular plate with

elastic edge
8.5 Case CT1: Perfect circular plates with varying

boundary conditions at the edge
8.6 Case CT3: Perfect circular plates with free edge

varying thickness

Bibliography . 115

Example cases

8. Matlab cases

8.1 Case C1: Perfect circular plate with free edge
8.1.1 Input parameters

File 8.1.1 — PlateCharacteristics-CaseC1.mat.
Material parameters

nu 0.38
E 2e11
rho 7860

Geometrical characteristics
Rd 0.4
hd 1e-3

Imperfection characteristics
H 0
proj []
Imperfection type []
tau2 0
ModeType []
modeIndices []
error_coef []

Damping characteristics
X ’PowerLaw’
c []
dFac 0.05
dExp 0.6
dCons 0.5

Boundary condition parameters
BC ’free’
KR 0

102 Chapter 8. Matlab cases

KT 0

File 8.1.2 — SimulationParameters-CaseC1.mat.
Accuracy parameters

Nphi 1000
Npsi 100
NA 0

Accuracy parameters
scheme ’ECS’
fsd 0
Tsd 10

Accuracy parameters
Nr 400
Nth 400
dr_H 1e-4
op [1.0472, 0.8]

File 8.1.3 — ScoreParameters-Circular-CaseC1.mat.
Excitation type ’Strike’
T0 0.1
fm 200
Twid 0.005
fp_th 0.7854
fp_r 0.9

8.1.2 Results

Figure 8.1: Spectrogram of the velocity at the output point in case C1.

8.2 Case C2: Perfect circular plate with clamped edge 103

8.2 Case C2: Perfect circular plate with clamped edge
8.2.1 Input parameters

File 8.2.1 — PlateCharacteristics-CaseC2.mat.
Material parameters

nu 0.3
E 2e11
rho 7860

Geometrical characteristics
Rd 0.2
hd 0.8e-3

Imperfection characteristics
H 0
proj []
Imperfection type []
tau2 0
ModeType []
modeIndices []
error_coef []

Damping characteristics
X ’PowerLaw’
c []
dFac 0.008
dExp 0.6
dCons 0

Boundary condition parameters
BC ’clamped’
KR 0
KT 0

File 8.2.2 — SimulationParameters-CaseC2.mat.
Accuracy parameters

Nphi 600
Npsi 100
NA 0

Accuracy parameters
scheme ’ECS’
fsd 0
Tsd 10

Accuracy parameters
Nr 400
Nth 400
dr_H 1e-4
op [1.0472, 0.2]

File 8.2.3 — ScoreParameters-Circular-CaseC2.mat.
Excitation type ’Strike’
T0 0.1

104 Chapter 8. Matlab cases

fm 250
Twid 0.005
fp_th 0.7854
fp_r 0.35

8.2.2 Results

Figure 8.2: Spectrogram of the velocity at the output point in case C2.

8.3 Case C3: Imperfect spherical circular plate with elastic edge
8.3.1 Input parameters

File 8.3.1 — PlateCharacteristics-CaseC3.mat.
Material parameters

nu 0.38
E 2e11
rho 7860

Geometrical characteristics
Rd 0.4
hd 1e-3

Imperfection characteristics
H 0.02
proj []
Imperfection type ’Spherical’
tau2 0
ModeType ’Axisymmetric’
modeIndices []
error_coef 0.1

Damping characteristics

8.4 Case R5: Imperfect spherical circular plate with elastic edge 105

X ’PowerLaw’
c []
dFac 0.008
dExp 0.6
dCons 0

Boundary condition parameters
BC ’elastic’
KR 10
KT 1000

File 8.3.2 — SimulationParameters-CaseC3.mat.
Accuracy parameters

Nphi 800
Npsi 60
NA 100

Accuracy parameters
scheme ’verlet’
fsd 0
Tsd 10

Accuracy parameters
Nr 400
Nth 400
dr_H 1e-4
op [1.0472, 0.2]

File 8.3.3 — ScoreParameters-Circular-CaseC3.mat.
Excitation type ’Strike’
T0 0.1
fm 200
Twid 0.005
fp_th 0.7854
fp_r 0.5167

8.3.2 Results
8.4 Case R5: Imperfect spherical circular plate with elastic edge

8.4.1 Input parameters

File 8.4.1 — PlateCharacteristics-CaseR5.mat.
Material parameters

nu 0.3
E 2e11
rho 7860

Geometrical characteristics
Lx 0.6
Ly 0.6
hd 0.8e-3

Imperfection characteristics
H 0

106 Chapter 8. Matlab cases

Figure 8.3: Spectrogram of the velocity at the output point in case C2.

proj []
Imperfection type []
xWidth 0
yWidth 0
ModeType ’All’
modeIndices []
error_coef []

Damping characteristics
X ’PowerLaw’
c []
dFac 0.008
dExp 0.6
dCons 0.05

Boundary condition parameters
BC ’SimplySupported’

File 8.4.2 — SimulationParameters-CaseR5.mat.
Accuracy parameters

Nphi 800
Npsi 60
NA 100

Accuracy parameters
scheme ’verlet’
fsd 0
Tsd 5

Accuracy parameters
Nx 400

8.5 Case CT1: Perfect circular plates with varying boundary conditions at the
edge 107

Ny 400
op [1.0472, 0.2]

File 8.4.3 — ScoreParameters-Circular-CaseR5.mat.
Excitation type ’Strike’
T0 0.1
fm 10
Twid 0.005
fp_x 0.1425
fp_y 0.0963
Excitation type ’Strike’
T0 1
fm 30
Twid 0.005
fp_x 0.1425
fp_y 0.0963

8.4.2 Results

Figure 8.4: Spectrogram of the velocity at the output point in case C2.

8.5 Case CT1: Perfect circular plates with varying boundary conditions at the
edge

8.5.1 Input parameters

File 8.5.1 — PlateCharacteristics-CaseCT1.mat.
Material parameters

nu 0.38
E 2e11

108 Chapter 8. Matlab cases

rho 7860
Geometrical characteristics

Rd 0.4
hd 1e-3

Imperfection characteristics
H 0
proj []
Imperfection type []
tau2 0
ModeType []
modeIndices []
error_coef []

Damping characteristics
X ’PowerLaw’
c []
dFac 0.05
dExp 0.6
dCons 0.5

Boundary condition parameters
BC ’free’, ’clamped’, ’elastic’
KR {0, 0, 100, 0, 1000}
KT {0, 0, 0, 1000, 10000}

File 8.5.2 — SimulationParameters-CaseCT1.mat.
Accuracy parameters

Nphi 1000
Npsi 60
NA 10

Accuracy parameters
scheme ’verlet’
fsd 0
Tsd 10

Accuracy parameters
Nr 400
Nth 500
dr_H 1e-4
op [0.5192, 0.8962]

File 8.5.3 — ScoreParameters-Circular-CaseCT1.mat.
Strikes 1-4

Excitation type ’Strike’
T0 {0.1, 0.6, 0.6, 0.5}
fm 0.1
Twid 7e-4
fp_th 3.1
fp_r 0.9

Strike 5

8.6 Case CT3: Perfect circular plates with free edge varying thickness 109

Excitation type ’Strike’
T0 0.1
fm 0.5
Twid 2e-3
fp_th 3.1
fp_r 0.9

Strikes 6-7
Excitation type ’Strike’
T0 {0.6, 0.5}
fm 0.1
Twid 7e-4
fp_th 3.1
fp_r 0.9

Strike 8
Excitation type ’Strike’
T0 0.1
fm 0.5
Twid 2e-3
fp_th 3.1
fp_r 0.9

8.5.2 Results

Figure 8.5: Spectrogram of the velocity at the output point in case CT1: Free edge.

8.6 Case CT3: Perfect circular plates with free edge varying thickness
8.6.1 Input parameters

110 Chapter 8. Matlab cases

Figure 8.6: Spectrogram of the velocity at the output point in case CT1: Clamped edge.

File 8.6.1 — PlateCharacteristics-CaseCT3.mat.
Material parameters

nu 0.38
E 1e11
rho 7860

Geometrical characteristics
Rd 0.3
hd { 0.3e-3, 0.6e-3, 1e-3, 2e-3, 3e-3}

Imperfection characteristics
H 0
proj []
Imperfection type []
tau2 0
ModeType []
modeIndices []
error_coef []

Damping characteristics
X ’PowerLaw’
c []
dFac 0.01
dExp 0.6
dCons 0.5

Boundary condition parameters
BC ’free’
KR 0
KT 0

8.6 Case CT3: Perfect circular plates with free edge varying thickness 111

Figure 8.7: Spectrogram of the velocity at the output point in case CT1: Elastic edge with KR =
100 and KT = 0.

File 8.6.2 — SimulationParameters-CaseCT3.mat.
Accuracy parameters

Nphi {1000, 1000, 1000, 800, 600}
Npsi 60
NA 10

Accuracy parameters
scheme ’verlet’
fsd 0
Tsd 10

Accuracy parameters
Nr 400
Nth 500
dr_H 1e-4
op [0.5192, 0.8962]

File 8.6.3 — ScoreParameters-Circular-CaseCT3.mat.
Strikes 1

Excitation type ’Strike’
T0 0.1
fm 0.5
Twid 1e-3
fp_th 3.1
fp_r 0.1

Strike 2
Excitation type ’Strike’
T0 1

112 Chapter 8. Matlab cases

Figure 8.8: Spectrogram of the velocity at the output point in case CT1: Elastic edge with KR = 0
and KT = 1000.

fm 1
Twid 2e-3
fp_th 3.1
fp_r 0.5

Strike 3
Excitation type ’Strike’
T0 1
fm 2
Twid 3e-3
fp_th 3.1
fp_r 0.9

8.6 Case CT3: Perfect circular plates with free edge varying thickness 113

Figure 8.9: Spectrogram of the velocity at the output point in case CT1: Elastic edge with KR =
1000 and KT = 10000.

Bibliography

[1] M Amabili. “Nonlinear vibrations of rectangular plates with different boundary conditions:
theory and experiments”. In: Computers & structures 82.31 (2004), pages 2587–2605 (cited
on page 36).

[2] Z.P. Bazant and L. Cedolin. Stability of structures. third edition. Singapore: World Scientific,
2010 (cited on page 17).

[3] S. Bilbao. “A family of conservative finite difference schemes for the dynamical von Karman
plate equations”. In: Numerical Methods for Partial Differential Equations 24.1 (2008),
pages 193–216 (cited on pages 39–41).

[4] A. Boudaoud et al. “Observation of Wave Turbulence in Vibrating Plates”. In: Physical
Review Letters 100 (2008), page 234504 (cited on page 9).

[5] O. Cadot et al. “Wave turbulence in vibrating plates”. In: Handbook of applications of chaos
theory. Edited by C. H. Skiadas and C. Skiadas. Chapman and Hall/CRC, 2016 (cited on
page 9).

[6] C. Camier. “Modélisation et étude numérique des vibrations non-linéaires de plaques circu-
laires minces imparfaites: application aux cymbales”. PhD thesis. Ecole Polytechnique X,
2009 (cited on pages 10, 23).

[7] C. Camier, C. Touzé, and O. Thomas. “Non-linear vibrations of imperfect free-edge circular
plates and shells”. In: European Journal of Mechanics-A/Solids 28.3 (2009), pages 500–515
(cited on pages 18, 20, 21, 23).

[8] C.Y. Chia. Nonlinear analysis of plates. McGraw-Hill International Book Company, 1980
(cited on page 17).

[9] M. Ducceschi. “Nonlinear Vibrations of Thin Rectangular Plates. A numerical investigation
with application to wave turbulence and sound synthesis.” PhD thesis. ENSTA-ParisTech,
2014 (cited on pages 10, 36, 41).

116 Chapter 8. Matlab cases

[10] M. Ducceschi and C. Touzé. “Modal approach for nonlinear vibrations of damped impacted
plates: Application to sound synthesis of gongs and cymbals”. In: Journal of Sound and
Vibration 344 (2015), pages 313–331 (cited on pages 10, 12, 17, 18, 20, 36, 41, 60, 76).

[11] M. Ducceschi et al. “Dynamics of the wave turbulence spectrum in vibrating plates: A
numerical investigation using a conservative finite difference scheme”. In: Physica D 280-
281 (2014), pages 73–85 (cited on page 9).

[12] M. Ducceschi et al. “Nonlinear dynamics of rectangular plates: investigation of modal
interaction in free and forced vibrations”. In: Acta Mechanica 225.1 (2014), pages 213–232
(cited on pages 24, 36, 39–41).

[13] G. Düring, C. Josserand, and S. Rica. “Weak Turbulence for a Vibrating Plate: Can One Hear
a Kolmogorov Spectrum?” In: Physical Review Letters 97 (2006), page 025503 (cited on
page 9).

[14] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: structure-preserving
algorithms for Ordinary differential equations. second edition. Springer, 2006 (cited on
page 12).

[15] T. Humbert et al. “Wave turbulence in vibrating plates: The effect of damping”. In: EPL
(Europhysics Letters) 102.3 (2013), page 30002 (cited on page 9).

[16] T. von Kármán. “Festigkeitsprobleme im Maschinenbau”. In: Encyklopädie der Mathematis-
chen Wissenschaften 4.4 (1910), pages 311–385 (cited on page 17).

[17] L.D. Landau and E.M. Lifschitz. Theory of Elasticity. third edition. Elsevier Butterworth
Heinemann, 1986 (cited on page 17).

[18] J. Frelat M. Monteil O. Thomas and C. Touzé. “Effet de la mise en forme sur les vibrations
d’une coque mince : application au steelpan”. In: Proceedings of the 11th colloque National
en Calcul de structures, CSMA 2013, Giens. 2013 (cited on page 12).

[19] B. Miquel, A. Alexakis, and N. Mordant. “The role of dissipation in flexural wave turbulence:
from experimental spectrum to Kolmogorov-Zakharov spectrum”. In: Physical Review E
89.6 (2014), page 062925 (cited on page 9).

[20] M. Monteil. “Comportement vibratoire du steelpan : effet des procédés de fabrication et
dynamique non linéaire”. PhD thesis. ENSTA ParisTech, 2013 (cited on page 12).

[21] N. Mordant. “Are there waves in elastic wave turbulence ?” In: Physical Review Letters 100
(2008), page 234505 (cited on page 9).

[22] A. H. Nayfeh and D. T. Mook. Nonlinear oscillations. New-York: John Wiley & sons, 1979
(cited on page 17).

[23] G. L. Ostiguy and S. Sassi. “Effects of initial geometric imperfections on dynamic behavior
of rectangular plates”. In: Nonlinear Dynamics 3.3 (1992), pages 165–181 (cited on page 18).

[24] O. Thomas. “Analyse et modélisation de vibrations non-linéaires de milieux minces élas-
tiques. Application aux instruments de percussion (Analysis and modelisation of nonlinear
vibrations of thin elastic media. Application to nonlinear percussion instruments)”. PhD
thesis. Université Pierre et Marie Curie, Paris VI, 2001 (cited on page 9).

[25] O. Thomas and S. Bilbao. “Geometrically nonlinear flexural vibrations of plates: In-plane
boundary conditions and some symmetry properties”. In: Journal of Sound and Vibration
315.3 (2008), pages 569–590 (cited on pages 17, 18, 20, 24, 25, 35).

8.6 Case CT3: Perfect circular plates with free edge varying thickness 117

[26] C. Touzé. “Analyse et modélisation de signaux acoustiques et vibratoires chaotiques. Appli-
cation aux intruments de percussion non-linéaires (Analysis and modelisation of vibratory
and acoustics chaotic signals. Application to nonlinear percussion instruments)”. PhD thesis.
Université Pierre et Marie Curie, Paris VI, 2000 (cited on page 9).

[27] C. Touzé, S. Bilbao, and O. Cadot. “Transition scenario to turbulence in thin vibrating plates”.
In: Journal of Sound and Vibration 331.2 (2012), pages 412–433 (cited on page 9).

[28] C. Touzé, O. Thomas, and M. Amabili. “Transition to chaotic vibrations for harmonically
forced perfect and imperfect circular plates”. In: International Journal of Non-linear Me-
chanics 46.1 (2011), pages 234–246 (cited on page 9).

[29] C. Touzé, O. Thomas, and A. Chaigne. “Asymmetric non-linear forced vibrations of free-
edge circular plates. Part 1: Theory”. In: Journal of Sound and Vibration 258.4 (2002),
pages 649–676 (cited on pages 9, 17, 24).

[30] A. Zagrai and D. Donskoy. “A “soft table” for the natural frequencies and modal parameters
of uniform circular plates with elastic edge support”. In: Journal of sound and vibration
287.1 (2005), pages 343–351 (cited on page 24).

	Part I — Introduction
	Foreword
	1 Introduction

	Part II — Theory
	2 General equations
	2.1 Von Kármán equations
	2.2 Imperfect plate case
	2.3 Modal approach for the perfect plate
	2.4 Eigenfrequencies of the imperfect plate

	3 Circular plates
	3.1 Non-dimensioning of variables
	3.2 Boundary conditions
	3.3 Mode families and modal coupling coefficients for some combinations of boundary conditions

	4 Rectangular plates
	4.1 Boundary conditions
	4.2 Mode families and modal coupling coefficients for some combinations of boundary conditions

	5 Time integration schemes
	5.1 Operators
	5.2 Energy conserving scheme
	5.3 Störmer-Verlet scheme

	Part III — User's manual
	6 Matlab code
	6.1 Installation and general description
	6.2 How to use the program
	6.3 Linear characteristics functions
	6.4 Nonlinear characteristics functions
	6.5 Imperfection functions
	6.6 Excitation and damping functions
	6.7 Time integration functions
	6.8 Ouput plot functions
	6.9 Parsers
	6.10 Input file contents

	7 C++ code

	Part IV — Example cases
	8 Matlab cases
	8.1 Case C1: Perfect circular plate with free edge
	8.2 Case C2: Perfect circular plate with clamped edge
	8.3 Case C3: Imperfect spherical circular plate with elastic edge
	8.4 Case R5: Imperfect spherical circular plate with elastic edge
	8.5 Case CT1: Perfect circular plates with varying boundary conditions at the edge
	8.6 Case CT3: Perfect circular plates with free edge varying thickness

	Bibliography
	Index

